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Abstract
Hibernation is a widespread metabolic strategy among mammals for surviving periods of food scarcity. During hibernation, 
animals naturally alternate between metabolically depressed torpor bouts and energetically expensive arousals without 
ill effects. As a result, hibernators are promising models for investigating mechanisms that buffer against cellular stress, 
including telomere protection and restoration. In non-hibernators, telomeres, the protective structural ends of chromosomes, 
shorten with age and metabolic stress. In temperate hibernators, however, telomere shortening and elongation can occur 
in response to changing environmental conditions and associated metabolic state. We investigate telomere dynamics in a 
tropical hibernating primate, the fat-tailed dwarf lemur (Cheirogaleus medius). In captivity, these lemurs can hibernate 
when maintained under cold temperatures (11–15 °C) with limited food provisioning. We study telomere dynamics in eight 
fat-tailed dwarf lemurs at the Duke Lemur Center, USA, from samples collected before, during, and after the hibernation 
season and assayed via qPCR. Contrary to our predictions, we found that telomeres were maintained or even lengthened 
during hibernation, but shortened immediately thereafter. During hibernation, telomere lengthening was negatively correlated 
with time in euthermia. Although preliminary in scope, our findings suggest that there may be a preemptive, compensatory 
mechanism to maintain telomere integrity in dwarf lemurs during hibernation. Nevertheless, telomere shortening immediately 
afterward may broadly result in similar outcomes across seasons. Future studies could profitably investigate the mechanisms 
that offset telomere shortening within and outside of the hibernation season and whether those mechanisms are modulated 
by energy surplus or crises.
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Introduction

Hibernation is a widespread metabolic strategy employed 
by animals to survive seasonal environments (Geiser 2013). 
All major mammalian lineages have “heterothermic” mem-
bers, i.e., species that can undergo torpor for a few hours to 
several days at a time (Carey et al. 2003; Mohr et al. 2020), 
including for example, Monotremata: short-beaked echidna 
(Tachyglossus aculeatus, Nicol et al. 2002), Marsupialia: 

monito del monte (Dromiciops gliroides, Fontúrbel et al. 
2022), Eutheria Eulipotyphla: hedgehogs (Erinaceus rou-
manicus, Rutovskaya et al. 2019), Eutheria Xenartha: pichi 
(Zaedyus pichiy, Superina and Boily 2007), Eutheria Chirop-
tera: little brown bat (Myotis lucifugus, Jonasson and Willis 
2012), and Eutheria Rodentia: Arctic ground squirrel (Sper-
mophilus parryii, Barnes and Ritter 1993). Even in tropical 
environments, faced with periods of food scarcity, hetero-
thermic animals can reduce energetic demands by lowering 
their metabolism (Geiser and Mzilikazi 2011; Lovegrove 
and Génin 2008; Mzilikazi and Lovegrove 2005; Nowack 
et al. 2010).

Tropical hibernators, like their temperate counterparts, 
can experience multi-day torpor bouts interspersed with 
arousals, a return to “normal” or euthermic temperature con-
ditions achieved through active thermogenesis (Dausmann 
2014). Because hibernators alternate between torpid and 
euthermic states, they naturally experience drastic metabolic 
shifts without showing the harmful effects that would be 
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experienced by non-heterotherms undergoing similar meta-
bolic changes (Blanco et al. 2018; Carey et al. 2003; Landes 
et al. 2020). In other words, the physiological flexibility 
intrinsic to hibernation must include protective mechanisms 
to offset the metabolic stress presumably caused by torpor/
arousal cycles (Hampton et al. 2010; Wu and Storey 2016). 
Intriguingly, and perhaps as a result of hibernation, hibernat-
ing species tend to live long lives for animals of their size 
(Blanco and Zehr 2015; Constant et al. 2020; Hoelzl et al. 
2016a; Turbill et al. 2011; Wu and Storey 2016).

In recent decades, research on aging, metabolic stress, 
and longevity has converged on telomeres, the protective 
structural ends of chromosomes that have been traditionally 
considered markers of aging and cellular health (Chakravarti 
et al. 2021; Shay and Wright 2019; Trochet et al. 2015). In 
non-hibernators like humans and other primates, telomeres 
inexorably shorten over a lifespan of somatic cell division, 
ultimately leading to organismal senescence and age-related 
diseases (Burraco et al. 2022; Chakravarti et al. 2021; Shay 
and Wright 2019; Trochet et al. 2015). Telomere shortening 
or “erosion” can result from progressive mitotic activity, 
e.g., “replicative ageing” (Barnes et al. 2019) and cellular 
oxidative stress (Barnes et al. 2022; Brown et al. 2022; 
Koliada et al. 2015; Remot et al. 2022; Tobler et al. 2022; 
Wilbourn et al. 2018). If left unrepaired, telomere shortening 
can affect cellular integrity and ultimately cause cellular 
death (Brown et al. 2022; Engin and Engin 2021; Hemann 
et al. 2001; Monaghan and Ozanne 2018; Sun et al. 2015; 
Victorelli and Passos 2017).

In hibernators, mitotic activity is severely reduced 
or halted during torpor bouts as a result of metabolic 
depression, but arousals may incur great cellular oxidative 
stress caused by metabolic spikes (Carey et  al. 2003; 
Giroud et al. 2021) potentially affecting telomere integrity. 
Remarkably, hibernators seem to have the capacity to 
elongate telomeres to protect, prevent, and/or repair cellular 
damage. For example, telomere elongation via telomerase 
activity has been shown to occur in some hibernators like 
bats (Power et al. 2023). This is unlike non-hibernators, 
where telomerase activity is repressed in most somatic 
tissues as an anti-cancer evolutionary strategy (though 
telomerase activity in mammals may be more complex 
than previously thought, e.g., Pepke and Eisenberg 2022). 
Hence, telomere dynamics in hibernators may hold clues 
for understanding longevity and cellular senescence in 
mammals.

In temperate hibernators like the edible dormouse 
(Glis glis), the number of arousals and the time spent 
in euthermia, i.e., “normal” body temperature, had 
strong effects on telomeres: individuals that underwent 
more and longer arousals displayed greater telomere 
shortening (Hoelzl et  al. 2016b). After hibernation, 
however, dormice with access to surplus food were able to 

elongate telomeres. Thus, telomere elongation in dormice 
supports the notion that there are protective mechanisms 
in hibernators, while acknowledging inherent metabolic 
costs to telomere maintenance and regeneration (Hoelzl 
et al. 2016b; Ruf and Bieber 2020).

Telomere changes in a related species, the garden 
dormouse (Eliomys quercinus), showed similar patterns 
of shortening and elongation according to temperature 
conditions and food availability (Giroud et  al. 2014). 
On the one hand, telomeres shortened when animals 
rapidly transitioned from low-temperature torpor to high-
temperature euthermia, presumably as a result of oxidative 
stress during arousals (Nowack et al. 2019). In fact, those 
hibernating at warmer temperatures (14 °C) experienced 
less telomere attrition than those hibernating under colder 
conditions (3 °C) (Nowack et al. 2019). On the other hand, 
an individual's ability to repair telomeres was modulated 
by energy surplus. Garden dormice that were provisioned 
food during hibernation were able to elongate telomeres 
both under cold and warm temperature regimens (Giroud 
et al. 2023).

These studies on temperate hibernators suggest complex 
relationships between telomere dynamics, metabolic 
shifts, temperature conditions, and food availability. 
Are these relationships ubiquitous across hibernators, 
including animals inhabiting tropical environments? 
Dwarf lemurs (Cheirogaleus spp., suborder Strepsirrhini) 
are small-bodied, nocturnal primates endemic to 
Madagascar (Blanco et al. 2018; Fietz 2003). Although 
they are comparable in size to dormice, they naturally 
hibernate in the tropics (Blanco et al. 2018; Dausmann 
et al. 2005; Dausmann and Blanco 2016; Dausmann and 
Warnecke 2016). Whereas temperate hibernators can 
experience near-freezing conditions in nature, and undergo 
arousals from torpor at low temperatures, dwarf lemurs 
can hibernate under a range of temperature conditions, 
from 10° C to 30 °C, and can use temperature-stable or 
temperature-fluctuating hibernacula, e.g., inside tree holes 
(Blanco et al. 2018; Dausmann 2014). Dwarf lemurs are 
obligate hibernators in the wild, but can express only 
shallow metabolic depression under captive conditions 
when kept in warm rooms with daily food provisioning 
(Foerg and Hoffmann 1982). By restricting food and 
exposing individuals to cold temperature conditions 
during the winter, we successfully facilitated hibernation 
in fat-tailed dwarf lemurs (C. medius, median life span 
of 15 years; maximum life span of 29 years (Blanco and 
Zehr 2015) at the Duke Lemur Center (DLC), NC, USA 
(Blanco et al. 2021, 2022). When hibernating, DLC dwarf 
lemurs undergo multi-day torpor bouts of up to 11 days 
continually, interrupted by euthermic periods, i.e., 
arousals, lasting about 24 h (Blanco et al. 2021).
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To investigate the relationship between torpor/arousal 
cycles and telomere dynamics, we transferred dwarf lemurs 
to temperature-controlled rooms to facilitate hibernation 
(11–15 °C) for approximately 4 months. If arousal-induced 
oxidative stress is a hallmark of hibernation, we predict that 
dwarf lemurs will show telomere shortening under cold con-
ditions, when arousing from relatively low body tempera-
ture. Moreover, we predict telomere shortening to be related 
to the time spent euthermic (i.e., not torpid).

Methods

Study subjects and data analysis

We studied eight dwarf lemurs (4F, 4M; aged 1–16 years) 
from October 2020 to April 2021. At the DLC, dwarf lemurs 
were housed in small family units or solitarily in standard 
housing ( ≥ 0.68m3/animal) under a North Carolina-like 
photoperiod (Blanco et al. 2021, 2022). During the active 
season (April–October), animals were maintained at 
22–25 °C and offered food daily. During the hibernation 
season (between October 26 and March 4) individuals (mean 
± SD pre-hibernation body mass = 286 ± 20 g) were housed 
in temperature-controlled rooms (11–15 °C) (Blanco et al. 
2022). Under these conditions, dwarf lemurs underwent 
multi-day torpor bouts interspersed with arousals. These 
lemurs were offered food after accruing 24 h in euthermia, 
although they rarely ate. Water was freely available. To 
assess activity, individuals were outfitted with radio collars 
that detect skin temperature. An external data logger stored 
hourly readings per individual. We used the differential 
between skin and room temperature to determine torpor 
expression and time spent in euthermia based on published 
protocols (Blanco et  al. 2022). Average days in torpor 
by dwarf lemurs progressively increased, e.g., from > 1 
in November to > 4 in February. Maximum time spent 
continuously in torpor by a single animal was 8.9 days.

All dwarf lemurs were sampled in the pre-hibernation 
(mid-October), mid-hibernation (mid-January), end of 
hibernation (i.e., the day ambient temperatures were raised 
from 11–15 to 22–25 °C and daily food was provided), 

post-hibernation (mid-March) and 1 month after the post-
hibernation sampling (mid-April) (Fig. 1) periods. During 
the hibernation season, all individuals were either euther-
mic or arousing toward euthermia at the time of the sam-
pling. During sampling, we collected epithelial cells from 
the lemurs’ cheeks using PERFORMAgene oral swab kits 
(DNA Genotek Inc.). Oral swabs were stored in buffer at 
stable room temperature for up to 6 months until analysis.

DNA extraction and telomere length measurements

The samples were extracted according to the 
PERFORMAgene protocol. The relative telomere length 
measurement assay was adapted from the original methods 
by Cawthon (2002) and Park et al. (2013) and represents the 
ratio of two qPCR reactions: telomere over single copy gene 
(T/S). The single copy gene chosen for C. medius was POP7 
(RNaseP), subunit p20.

For telomere (T), we used the following primers: Tel 
C [5′-TGT TAG GTA TCC CTA TCC CTATC-3′], at a final 
concentration of 200 nM, and Tel G [5′-ACA CTA AGG TTT 
GGG TTT GGGTT-3′], at a final concentration of 400 nM. 
For the single copy gene (S), we used a mix of POP7f [5′-
CCT TTT CTT CGC TTC CGT GG -3′] and POP7r [5′- TAC 
TTC CTC CGT TCC ACC GT-3′], at a final concentration 
of 1 mM for both primers (for additional methodological 
details see Suppl. Mat.).

Both telomere and single copy gene PCR reactions 
were performed with QuantiFast SYBR Green PCR Kit 
(QIAGEN) on a LightCycler 480 real-time PCR machine. 
Twofold serial dilutions of genomic DNA, ranging from 
10 ng to 0.3 ng/μl (extracted from fat-tailed dwarf lemur 
blood) were used to create a standard curve, from which 
the concentrations of telomere reactions and single copy 
gene reactions were determined for each sample. The same 
reference DNA was used for all PCR runs. The T/S ratio for 
each sample was measured in triplicate wells, three times, 
in paired PCR runs (T-run followed by S-run, three times). 
When the duplicate T/S value and the initial value varied by 
more than 7% for any sample, it was run a third time and the 
two closest values were reported. All assays for the entire 
study were performed using the same lots of reagents.

Fig. 1  Left: fat-tailed dwarf lemur at the Duke Lemur Center. Right: sample collection protocol: dwarf lemurs were sampled at pre-, mid-, end, 
post-hibernation and during the active season (light blue stars)
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Data analysis and statistical tests

To determine the effects of time point on telomere lengths, 
we used a non-parametric, repeated-measures Friedman 
test implemented in GraphPad Prism (version 9.5.0). We 
included all five time points, i.e., pre-hibernation, mid-
hibernation, end-hibernation, post-hibernation and active 
season. We used Dunn’s post hoc tests to determine 
significant pairwise comparisons.

We also examined whether activity patterns were related 
to telomere dynamics. Specifically, we determined if hours 
in euthermia during the hibernation season correlated with 
telomere length by running a Spearman correlation between 
total hours in euthermia and daily change in telomere length 
(DTL) during hibernation. We computed DTL to account 
for the disparity in total telomere length across individuals 
and the different number of days between sampling events. 
DTL was calculated by subtracting the difference in telomere 
length from pre-hibernation to end-hibernation divided by 
the number of days between sampling.

Results

We found an overall significant effect of time point (Fried-
man statistic = 13.7, p = 0.008), with telomeres maintain-
ing length or elongating during hibernation, but shortening 
directly afterward (Fig. 2). Post hoc tests clarified that tel-
omeres were longer on the last day of hibernation compared 
to both the post-hibernation (p = 0.044) and active season 
(p = 0.027) sampling time points (Fig. 2a). We thus detected 
telomere shortening following the hibernation season, 
despite there being only a 2-week period between the sam-
pling points at end-hibernation and post-hibernation. Nev-
ertheless, we did detect great variation between individuals 
(Fig. 2b). Several females showed the biggest changes in 
telomere lengths through time, albeit our sample sizes lim-
ited statistical resolution.

During the hibernation season, the degree of telomere 
lengthening related to the time spent euthermic: dwarf 
lemurs that spent more time in euthermia during the 

hibernation season showed relatively less telomere length-
ening than did dwarf lemurs spending less time in euthermia 
(Spearman correlation test: r =  – 0.8095, p = 0.0218; Fig. 3).

Discussion

We observed variable telomere lengthening in dwarf lemurs 
as the hibernation season progressed, with the degree of 
lengthening negatively correlating to time spent in euther-
mia, followed by significant telomere shortening in the 
weeks after the end of hibernation. If telomere maintenance 
or elongation is a mechanism to offset cellular stress in 
hibernators, one major question raised by our results is why 
dwarf lemurs would shorten telomeres directly after hiberna-
tion? These patterns are unlike what is commonly reported 
for temperate hibernators, wherein telomeres shorten during 
hibernation under food deprivation, but lengthen afterward 
under food provisioning (Hoelzl et al. 2016b). Our results 
also differed from those of Nowack et al. (2019) who found 
dormice hibernating at, and arousing from, colder versus 
warmer temperatures experienced greater telomere short-
ening. Perhaps, our results point to biological differences 

Fig. 2  Telomere length at five sampling time points, including a average lengths across individuals with error bars indicating 95% confidence 
intervals (CI) and b individual values for all female (stars) and male (circles) study lemurs. Statistics can be found in the text; * p < 0.05
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Fig. 3  Daily change in telomere length (DTL) during hibernation 
against time spent in euthermia. R and p values determined via Spear-
man correlation. Females are represented by stars, and males by cir-
cles. 
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between temperate rodent models and tropical primates 
(Steinert et al. 2002; Trochet et al. 2015).

One potential explanation is that telomere maintenance/
elongation in dwarf lemurs during hibernation is an essential 
counterstrategy to cope with the oxidative stress incurred 
during arousals. This strategy may be favored preemptively if 
individuals would otherwise approach critical short telomere 
length that could impair cellular functionality, i.e., the “last 
resort elongation hypothesis” (Haussman and Mauck 2008; 
Tobler et al. 2022). Indeed, preemptive elongation has been 
suggested to occur in dormice with access to surplus food 
before hibernation (Hoelzl et  al. 2016b). Alternatively, 
perhaps the discrepancies between systems are simply due 
to differences in experimental design, and additional studies 
of other tropical hibernators and heterothermic primates are 
warranted to confirm the findings.

At the onset of the active season, we found consistent 
and significant telomere shortening. Telomere length then 
remained virtually unchanged during the month following 
the post-hibernation time point. Emergence from hibernation 
in dwarf lemurs is linked to the initiation of the reproductive 
season, which is energetically challenging for males that 
must develop testes in anticipation of mating (Fietz and 
Dausmann 2003). Hence, telomere shortening directly 
following hibernation may be associated with cellular 
and physiological stress from hormonal reconfigurations, 
increased locomotor activity, and restitution of physiological 
functions (e.g., sleep and growth) (Speakman 2008) that 
may have been restricted to interbout arousals or completely 
arrested during hibernation. Overall, perhaps this telomere 
shortening acts as a “reset” to pre-hibernation lengths with 
little implication for animal aging or health, because in the 
end, telomere length did not significantly differ between pre- 
and post-hibernation periods.

Our result that the degree of telomere lengthening during 
hibernation is inversely correlated to time in euthermia 
supports the notion that torpor per se may not affect 
telomere integrity, but arousals and/or time in euthermia 
can affect both telomere length by means of shortening due 
to increased oxidative stress, or by means of lengthening 
through repair mechanisms to counteract oxidative stress. 
Evidence of telomere shortening or “degradation” under 
environmentally harsh conditions and subsequent telomere 
elongation has also been documented in non-hibernating 
mammals and birds (Brown et al. 2022; Criscuolo et al. 
2020) and it is consistent with the “metabolic telomere 
attrition” hypothesis that posits telomere attrition is greatest 
when individuals undergo harsh energetic constraints 
(Casagrande and Hau 2019; Power et al. 2023).

Captive dwarf lemurs may be uniquely suited as models 
in which to investigate telomere dynamics because they 
can express great physiological breadth under different 
environmental conditions. It is important to note, however, 

that our small sample size coupled with limited sampling 
renders the results reported here preliminary. The scarcity 
and protected status of these lemurs (we are unaware of any 
breeding colonies other than at the Duke Lemur Center) 
limits opportunities for replication and more rigorous and 
invasive sampling protocols. However, future studies could 
profitably investigate the putative protective mechanisms 
that offset telomere shortening within and outside of the 
hibernation season, and whether those mechanisms are 
reliant on energy surplus or crises.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00360- 024- 01541-9.
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