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Alteration of the rat cecal microbiome
during colonization with the helminth

Hymenolepis diminuta
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OTU, operational taxonomic unit; PCoA, principle coordinate analysis; QIIME, Quantitative Insights Into Microbial Ecology

The microbiome is now widely recognized as being important in health and disease, and makes up a substantial
subset of the biome within the ecosystem of the vertebrate body. At the same time, multicellular, eukaryotic organisms
such as helminths are being recognized as an important component of the biome that shaped the evolution of our
genes. The absence of these macroscopic organisms during the early development and life of humans in Western
culture probably leads to a wide range of human immunological diseases. However, the interaction between the
microbiome and macroscopic components of the biome remains poorly characterized. In this study, the microbiome of
the cecum in rats colonized for 2 generations with the small intestinal helminth Hymenolepis diminuta was evaluated.
The introduction of this benign helminth, which is of considerable therapeutic interest, led to several changes in the
cecal microbiome. Most of the changes were within the Firmicutes phylum, involved about 20% of the total bacteria,
and generally entailed a shift from Bacilli to Clostridia species in the presence of the helminth. The results point toward
ecological relationships between various components of the biome, with the observed shifts in the microbiome
suggesting potential mechanisms by which this helminth might exert therapeutic effects.

Introduction

The biome of the vertebrate body contains a vast array of
microorganisms, termed the microbiome, as well as a variety of
multicellular, macroscopic organisms. Importantly, the micro-
biome, which by definition contains only microscopic organisms,
is a subset of the body’s biome, which includes multicellular,
macroscopic organisms that often reach several millimeters in
length and sometimes even meters in length. Such multicellular
organisms include a variety of arthropod ectoparasites, as well as
nematodes and cestodes that colonize various internal organs.
Although multicellular organisms living within the vertebrate
body have been largely lost in humans living in post-industrial
society, these organisms have been an integral part of the biome
of vertebrates for hundreds of millions of years1 and were key
components of the human biome during the evolution of our
genome.2 That is, these organisms were an integral component
of our “environment of evolutionary adaptedness,”3,4 an impor-
tant concept in the field of evolutionary medicine. Briefly, emerg-
ing evidence strongly suggests that loss of this compartment of

our biome has led, in large part, to pandemics of allergic, autoim-
mune, and other inflammatory related diseases in modern soci-
ety.1,5-7 Further, the emerging view of the vertebrate body is that
of an ecosystem, with numerous interconnected components,
including the immune system and various parts of the biome.
However, how these components interact is only now beginning
to be understood.

The effect of helminths on disease is well documented, with a
large number of studies finding that helminths attenuate allergic,
autoimmune, and other inflammation-related conditions.1,6,8,9 It
is thus not surprising that “helminth therapy” has proven very
successful in both animal studies as well as some clinical studies,
and is currently receiving considerable attention as a means of
normalizing immune function in Western culture, thus eliminat-
ing allergies and autoimmune conditions.7 However, given the
lack of knowledge regarding the effect of helminths on the micro-
biome, it is not surprising that the role of the microbiome in the
treatment of disease using helminths is entirely unclear. Work in
non-human primates, using helminths to ameliorate idiopathic
chronic diarrhea, showed several changes in the mucosal-
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associated microbiome during the course of treatment,10 and it
seems likely that changes in the microbiome were influenced
strongly by inflammation in the mucosal surface and the effect of
the helminths on that inflammation.11 Perhaps more telling was
the observation that Schistosoma japoni simultaneously amelio-
rated trinitrobenzenesulfonic acid-induced colitis in mice and
reduced bacterial translocation across the gut epithelial barrier.12

Further, Walk et al.13 found that colonization with the round-
worm Heligmosomoides polygyrus led to concomitant changes in
the microbiome and alleviation of colitis in interleukin-10 defi-
cient mice. Whether these changes in the microbiome as a result
of helminth colonization are important in the amelioration of
disease remains unknown, and will undoubtedly be a subject of
intense future study. Further, studies will undoubtedly be
required to individually examine the effect on the microbiome of
each helminth-host relationship of interest.

The helminth Hymenolepis diminuta (the rat tapeworm) is of
considerable interest. Its natural hosts include various species of
rat, including Rattus norvegicus, but it has been known to colo-
nize other rodents with varying success, and, on rare occasions,
humans.14 The animal has a lifespan comparable to that of the
rat, and lacks a digestive tract, adsorbing nutrients through its
outer epithelial surface. Despite being one of the most widely
studied helminths in the laboratory,15 its effect on the micro-
biome remains unknown. The helminth, a cestode which lives
exclusively in the small intestine, blocks experimentally induced
colitis in mice more effectively than daily immunosuppression
with steroids.16 More compelling is the observation that 2 com-
panies, WormTherapy based in Tijuana, Mexico, and Biome
Restoration based in Lancaster, UK, have recently begun produc-
tion of this helminth for use in humans as a means of treating
immune disease and enriching the body’s biome, respectively.
The cestode has some attractive features when compared to other
helminths, all nematodes, which are used for helminth therapy.
For example, since Hymenolepis diminuta does not effectively col-
onize humans and must be introduced artificially into the body,
it may be more attractive from a regulatory perspective than
organisms such as the human hookworm (Necator americanus)
and human whipworm (Trichuris trichiura), which can colonize
humans and, under some circumstances, be transmitted from
human-to-human. Further, unlike the hookworm, the tapeworm
is non-invasive in its primary host, restricted in distribution to
the lumen of the small bowel. Importantly, the therapeutic stage
of the Hymenolepis diminuta is readily cultivated in arthropod
intermediate hosts and thus, unlike hookworms and whipworms,
is not harvested from the feces of the primary host. This last fac-
tor may have benefits in terms of cost effectiveness, which may
prove especially important as prophylactic treatment of human
populations with helminths1 is considered. Although these fac-
tors merit consideration, the most important issues regarding the
selection of helminth species for human therapy and disease pre-
vention relate to the relative effectiveness of the species on human
disease, of course. Studies to evaluate these most important issues
are, unfortunately, not yet underway.

Given the interest in Hymenolepis diminuta as a potential ther-
apeutic agent, and given the known role of the microbiome in

immune health, we evaluated the helminth’s effect on the colonic
microbiome of its native host, Rattus norvegicus. Animals were
colonized for 2 generations to ensure that the effects of helminth
colonization were present from the time of birth via transmittal
of immune components through the milk. Further, the second
generation of animals was colonized with helminths at the time
of weaning to ensure a continuous influence of the helminth on
the rodent’s biome. The animals were further divided by expos-
ing half of the animals, both with and without helminths, to lipo-
polysaccharide (LPS) 4 days prior to analysis of the microbiome.
This experiment was designed to evaluate the effects ofHymenole-
pis diminuta on the rat’s microbiome following exposure to and
recovery from a mild inflammatory challenge: LPS-induced
inflammation dissipates within hours and is not apparent 4 days
post-exposure. The analysis of the microbiome was conducted
with the view that tapeworm-induced changes in the microbiome
may shed light on the ability of the helminth to alleviate inflam-
mation in vertebrate hosts.

Results

Effect of colonization with Hymenolepis diminuta on the rat
microbiome

The overall experimental design, described briefly in the
Introduction and in detail in the Methods, is summarized in Fig-
ure 1. In Group S (all animals not exposed to LPS), colonization
with Hymenolepis diminuta did not affect a or b diversity in a

Figure 1. The experimental design. The top portion of the diagram
shows the division of animals during the study, and the bottom portion
shows the timeline for specific events. Animals colonized with helminths
are shown in green throughout the diagram, and green arrows indicate
the feeding of helminths to the animals. Forty-two days after coloniza-
tion of F0 rats (F0) with helminths or sham (saline), the animals were
bred. At the time of weaning (age 21 days), 32 F1 males (F1) were ran-
domly selected from the offspring, and were colonized with and without
helminths as shown. Finally, when the animals reached an average age
of 62 days (range 56–74), 96 hours before termination of the experi-
ment, the animals were again divided further and received immune stim-
ulation with LPS or with sham (saline) as shown in the diagram.
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statistically significant manner (Fig. 2). However, differences in
community composition associated with helminth colonization
were evident (Fig. 3). The most prominent differences were the
relatively fewer amounts of Turicibacter and the relatively greater
amounts of Peptostreptococcaceae (unknown genus) in the pres-
ence of helminths. On average, Turicibacter accounted for more

than 22% of the sequences in animals without helminths, but
only about 4% of the sequences in the samples from animals
with helminths (an 82% decrease in the presence of helminths).
In contrast, colonization with helminths was associated with a
2.7-fold increase in the relative number of Peptostreptococcaceae
sequences found. Similar results were observed in Group L (all
animals exposed to LPS), with, on average, a 90% decrease in
Turibacter and a 2.4-fold increase in Peptostreptococcaceae in
the presence of helminths.

Quantitative analyses of the microbiome in Group S indicated
that the different amounts of Turibacter to Peptostreptococcaceae
in the presence and absence of helminths was statistically signifi-
cant and indeed the major change observed as a result of the hel-
minths, with a linear discriminant analysis (LDA) effect size
(log 10) of approximately 5 (Fig. 4A). However, a number of
other less substantial changes with lower LDA effect sizes were
observed in Group S. The same quantitative assessment of Group
L (Fig. 4B) with and without helminths again revealed major dif-
ferences in the amount of Turibacter to Peptostreptococcaceae
and a number of less substantial changes with lower LDA effect
sizes. However, the less substantial changes were, with few excep-
tions, not shared between Group S and Group L. Whether these
minor changes represent differences between Groups S and L
resulting from differences between their respective experimental
protocols (i.e., exposure to LPS versus saline) is unknown.

Phylogenetic assessment of changes in the microbiome as a
result of colonization with Hymenolepis diminuta

Organizing the results shown in Figure 4 into cladograms
(Fig. 5) provides an easily appreciated view of the shifts in the
microbiome as a result of colonization with helminths. In Group
S, all microbial lineages significantly distinguishing rats treated
with Hymenolepis diminuta from those receiving saline belonged
to Firmicutes (Fig. 5A). In Group L, the isolated impact on Fir-
micutes was less dramatic, but the clade was still heavily affected
by colonization with Hymenolepis diminuta: 67% (10 out of 15)
of the differential abundances detected in the microbiome at the
operational taxonomic unit (OTU) level as a result of coloniza-
tion with Hymenolepis diminuta involved differences in Firmi-
cutes (Fig. 5B).

The effect of exposure to LPS on the microbiome
Because the only difference between Group S and Group L

was the exposure of Group L to LPS as described in the methods,
the effect of LPS exposure on the microbiome could be assessed
by comparing the microbiome in Group S with that in Group L.
Injection with LPS did not affect a diversity measures, but LPS
significantly impacted the b diversity (b diversity between experi-
mental groups, see Methods) in rats without helminths (Fig. 2)
as assessed by a 2-way ANOVA and post-hoc t-tests. However, in
rats with helminths, the b diversity was unaffected by LPS. Fur-
ther, as shown in Figure 6, increased prevalence of some lineages
was observed in the presence of LPS. However, the LDA effect
sizes were relatively small, and the changes associated with LPS
exposure were not consistent when comparing animals with and
without helminths.

Figure 2. Alpha (top) and b (bottom) diversity measures in animals from
Groups S colonized with (n D 8) and without (n D 7) helminths and
Group L colonized with (n D 6) and without (n D 7) helminths. Weighted
pairwise UniFrac distances were averaged within each group to calculate
an average b diversity value (a proxy for inter-individual variation). Anal-
ysis by 2-way ANOVA revealed no statistically significant changes in the
a diversity. Results from the Simpson diversity metric are shown, and are
similar to diversity measures using Chao1, Shannon-Weaver, and Faith’s
Phylogenetic Diversity indices. Significant changes in the b diversity
(UniFrac) were observed for helminth treatment (p D 0.0001) and for
the interaction between helminths and LPS treatment (p D 0.047). The
means and standard errors are shown. The bars show the result of the
post-hoc t-tests (p < 0.0001***; p < 0.005**; p < 0.05*) and indicate that
the predominant characteristic associated with the b diversity measure
is a relatively large value for the b diversity of animals without helminths
in group L.
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Figure 3. Microbiome composition in animals from Groups S colonized with (n D 8) and without (n D 7) helminths and Group L colonized with (n D 6)
and without (n D 7) helminths. The composition is based on 16S libraries isolated from digesta taken from the ceca when the animals reached an aver-
age age of 62 days (range 56–74 days). Results are shown at the (A) phylum and (B) genus level.
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Figure 4. For figure legend, see page 187.
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Principal Coordinate Analysis (PCoA) of the effects of
colonization with Hymenolepis diminuta on the microbiome

The PCoAs of the microbiome in Groups S and L illustrate
principal components (PCs) which showed a distinction between
animals colonized with helminths and those without helminths

(Fig. 7). The two groups showed similar component contribu-
tions to the observed variation, with PC1 accounting for 35–
40%, PC2 accounting for 21–23%, and PC3 accounting for
12%. However, the presence of helminths caused a shift along
principal component 2 in Group S (PC2S), but not PC2 of

Figure 4. Bacterial lineages with significantly different representation in rats inoculated with or without helminths in (A) Group S or (B) Group L. The log
linear discriminant analysis (LDA) effect size quantifies the degree to which each lineage contributes to the uniqueness of each sample class.
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Group L (PC2L). In Group L, the presence of helminths caused a
shift along principal component 3 (PC3L) rather than principal
component 2.

Discussion

The results presented herein point toward profound changes
in the microbiome in response to enriching the gut ecosystem
with a helminth having therapeutic potential. Colonization of
the rats used in this study with Hymenolepis diminuta causes a
substantial shift in the microbial community, primarily charac-
terized by changes in the relative contributions from species

within the Firmicutes phylum. Specifically, colonization with the
helminth is associated with increased Clostridia and decreased
Bacilli. The contribution of Bacilli to the microbiome is higher
with a Western diet characterized by processed sugars and high
fat content,17 whereas some species of Clostridia are known to
tighten the epithelial barrier and decrease propensity for
allergy.18-21 Thus, the changes in microbiome composition
observed following helminth colonization offer a potential expla-
nation for the therapeutic effects of helminths under some cir-
cumstances. However, it remains unknown whether these
changes in the microbiome are responsible, in part, for the
known therapeutic activity of Hymenolepis diminuta. Given the
potential for helminth therapy to resolve a number of

Figure 5. Cladograms of bacterial lineages with significantly different representation in rats with or without helminths in (A) Group S or (B) Group L. Line-
ages on the bacterial trees are color-coded to indicate whether the taxon does (red or green) or does not (yellow) significantly differ between sample
classes.
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immunological problems heretofore resistant to medical
efforts,1,6 this area of investigation promises to be very active and
informative in the future.

The use of 2 generations of laboratory animals in this study
ensured that the rats eventually tested had been exposed to the
effects of helminth colonization since their conception in utero.
It remains unknown whether exposure to helminths later in life
would have had similar effects on the microbiome. Thus, these
studies point toward a potentially positive effect of biome

enrichment for couples wishing to have children with a healthy
microbiome, if biome enrichment is practiced prior to conceiving
children. On the other hand, although the effects of biome
enrichment in human adults are well documented,22-24 this study
did not aim to probe the effects of biome enrichment later in life
on the microbiome.

The experimental protocol for Group L was designed to evalu-
ate the effects of Hymenolepis diminuta on the rat’s microbiome
following exposure to and recovery from a mild inflammatory

Figure 6. Bacterial lineages with significantly different representation in rats treated with LPS or without LPS (saline). The results from animals (A) without
and (B) with helminths are shown. The log linear discriminant analysis (LDA) effect size quantifies the degree to which each lineage contributes to the
uniqueness of each sample class.
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challenge. The LPS was administered in a manner that (a) pro-
duced few if any overt physical responses in the animals, and (b)
was timed before assessment of the microbiome such that any
effect of the LPS on the animals at the time of microbiome assess-
ment was likely, for the most part, dissipated. Some changes in

the microbiome were observed under these conditions, especially
an increased disparity between microbial communities in animals
without helminths after exposure to LPS, as indicated by the
increased b diversity in those animals. However, it might be
expected that a greater intensity and duration of inflammation
might more profoundly affect the microbiome, and further stud-
ies are warranted. At the same time, the relatively minor changes
in the microbiome seen when comparing animals with and with-
out exposure to LPS serve as basis for comparison with the more
dramatic changes seen with exposure to helminths. Further, the
results seen with and without colonization with helminths in
Group L serve as a validation for the results seen in Group S. In
summary, the results supports the assertion that colonization
with Hymenolepis diminuta does indeed have a profound effect
on the microbiome of the laboratory rat, resulting in shifts in
community structure that affects approximately 20% of the total
organisms present, despite the fact that the helminth lives in the
small intestine and the microbiome was assessed in the cecum.

Of interest is the mechanism by which Hymenolepis diminuta
alters niche space in the cecum and affects the microbiome.
Experiments, perhaps using immunodeficient animal models,
might be useful in distinguishing between direct alteration of
metabolic niche space by the helminth vs. alteration of niche
space via alteration of the host immune function.

Knowledge regarding the microbiome and its function is far
from complete at the present time. This fact is illustrated by the
observation that the OTU (family Peptostreptococcaceae) most
dramatically increased in the presence of helminths is not found
in the Greengenes database (default reference in QIIME). Evalu-
ation using SeqMatch of the sequences binned into that OTU by
QIIME resulted in 44% of the sequences being classified as Clos-
tridium XI, another 22% as unclassified Clostridia, and the rest
spread between 43 other taxa. However, only one of the 657
sequences was an identical match to anything in the database
(uncultured bacterium; HFDE2688FD12; JQ893212), confirm-
ing the QIIME results that the sequences in question were from
uncharacterized bacteria. This observation is particularly striking
because that OTU accounts for a substantial fraction of the
microbiome in the animals: roughly 7% and almost 20% of the
total sequences in animals without and with helminth coloniza-
tion, respectively. These studies point toward a great need for fur-
ther research in the basic rules that govern the microbiome and
interactions between the microbiome and other organisms such
as helminths within the biome.

Materials and Methods

Study design and colonization of animals with Hymenolepis
diminuta

All experiments were approved by the Duke University Insti-
tutional Animal Care and Use Committee (A096-13-04). Using
a Hund Wetzlar Wilovert dissecting microscope, Hymenolepis
diminuta cysticercoids (rat tapeworm larvae) were harvested from
meal bugs previously inoculated with the organisms (original
stock purchased from Carolina Biological Supply, Burlington,

Figure 7. Principle Coordinate Analysis (PCoA) of weighted Unifrac dis-
tances between libraries isolated from rats with (red) or without (blue)
helminths in (A) Group S or (B) Group L. Each data point represents a
library from a single animal (i.e., a single bar in Figure 3). Calculations
were performed using the UniFrac method; values are weighted to
account for differences in lineage frequencies. The distance between
points represents unique branches on a phylogenetic tree (i.e. evolution-
ary history not shared between libraries in Figure 3), as well as differen-
ces in the relative abundance of lineages. Closer points share more
branch length and have similar frequencies, while points more distant
from one another have more unique or disparate gut microbiomes.
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NC, USA). Male (n D 24) and female (n D 24) Sprague Dawley
rats from Harlan Sprague Dawley (Indianapolis, IN, USA) were
housed in a standard (hygienic) laboratory setting and fed Purina
Mills� LabDiet� 5001 ad libitum. Half of the animals were inoc-
ulated with 4 Hymenolepis diminuta cysticercoids (rat tapeworm
larvae between 5 weeks and 5 months of age) in a drop of 0.6%
saline, and the other half received a sham inoculation with saline
only. Animals with helminths were kept in separate cages from
animals without helminths, but all animals were kept in the same
room.

This approach resulted in confirmed colonization (confirmed
using a modified version of the McMaster technique25) with
Hymenolepis diminuta in all of the inoculated animals. Periodic
screening of non-colonized animals and of sentinel animals in
the facility showed no colonization, as is expected since Hymeno-
lepis diminuta requires an intermediate host and thus cannot be
transmitted directly rat-to-rat. Forty-two days after inoculation,
the animals were bred, resulting in 22 pregnant females. The
breeding yielded 125 male pups, which were arbitrarily selected
for study in lieu of the female animals. Thirty-two of the male
pups, 16 from colonized animals and 16 from uncolonized ani-
mals, were selected for use in this study. Colonized animals were
selected from 4 litters, and uncolonized animals were selected
from 6 litters to minimize any cage effects. The animals were
housed in pairs, further minimizing cage effects.

At 21 days of age, the 16 F1 males born to parents colonized
with Hymenolepis diminuta were themselves colonized with
Hymenolepis diminuta, and the colonization was confirmed as
described above for the parent generation. The 16 F1 males born
to parents not colonized with Hymenolepis diminuta were used as
controls and received a sham inoculation with saline only. At
58 days of age on average (range 52–70), the 32 animals were
divided arbitrarily into 2 groups, each containing 8 colonized
animals and 8 uncolonized animals. The first group (Group S)
received an intraperitoneal injection of 0.4 ml saline, and the sec-
ond group (Group L) received an intraperitoneal injection of
25 mg/kg lipopolysaccharide (LPS; derived from E. coli Serotype
0111:B4, Sigma, St. Louis, MO) in 0.4 ml phosphate buffered
saline. This injection without (Group S) or with (Group L) LPS
was the only difference between the experimental protocol for
the 2 groups. Animals were sacrificed 4 days after receiving treat-
ment with LPS or sham, at an average age of 62 days (range 56–
74). Samples from both groups were collected and processed dur-
ing the same time period and in the same facilities by the same
personnel, and samples from both groups were analyzed at the
same time in the same “batch.” Animals that received LPS were
housed in separate cages from animals that were not exposed to
LPS.

Procurement of samples for microbiome analysis
Ninety-six hours after saline or LPS injection, F1 males were

sacrificed by exsanguination under anesthesia, and the ceca were
collected. A longitudinal incision was made in each cecum, from
the ileocecal junction to the apex of the cecum, and then the
cecum was submerged in 5 mL of sterile filtered phosphate buff-
ered saline. Each cecum was vortexed for 60 seconds to release

cecal contents, and the cecal tissue was removed using sterile for-
ceps. The remaining mixture was separated into 3 aliquots, and
each was centrifuged at 16,000 £ g for 10 minutes. The superna-
tant was removed and the pellets were snap frozen in liquid nitro-
gen, then stored at ¡80�C until use. These pellets were used as a
source of DNA for microbiome analysis.

Microbial DNA extraction
DNA was extracted with the DNeasy kit (QIAGEN, Hilden,

Germany), using the following protocol. Fifty mL of sterile enzy-
matic lysis buffer (ELB) were prepared fresh for each reaction by
combining 1 mL 1 M Tris-Cl (pH 8.0), 200 mL 0.5 M EDTA
(pH 8.0), 2.5 mL 20% Triton X-100 (Sigma-Aldrich, St. Louis,
Missouri, USA), and 46.3 mL H20. Lysozyme (Sigma-Aldrich)
was also prepared fresh for each reaction, at a concentration of
200 mg/mL in ELB.

A DuraTube (BioExpress, Kaysville, Utah, USA) containing
one aliquot from each rat (above) was removed from ¡80�C
storage, and 0.4 g silica beads and 400 mL ELB were added to
each tube. DuraTubes containing sample, beads, and ELB were
thawed quickly at 65�C, then shaken for 2 minutes at 1500 rpm
on a GenoGrinder 2010 (SPEX Sample Prep, Metugen, New Jer-
sey, USA) to disrupt microbial cell walls. Forty mL lysozyme were
added to each tube (to a final concentration of 20 mg/mL); tubes
were vortexed briefly, then incubated at 30�C for 45 minutes to
achieve enzymatic disruption of cells. After incubation, tubes
were vortexed for 15 seconds, then centrifuged for 1 minute at
20,000 £ g to pellet stool particles. Supernatant (containing
DNA) was pipetted to a new 2-mL tube containing 20 mL Pro-
teinase K (QIAGEN, Hilden, Germany). 440 mL Buffer AL
(QIAGEN) were added, and each tube was vortexed briefly
before incubation at 56�C for 30 minutes. After incubation,
440 mL 100% ethanol were added to each reaction and mixed
thoroughly by vortexing. Seven hundred mL of the liquid were
added to a spin column (QIAGEN) and centrifuged for
1 minute at 12,000 £ g. Flowthrough was removed, and this
step was repeated until all liquid was processed. The column was
then rinsed with 200 mL of a 1:1:1 premade mix of ELB:AL:eth-
anol and centrifuged for 1 minute at 12,000 £ g. Flowthrough
was discarded, 500 mL Buffer AW1 (QIAGEN) were added, and
the column was spun for 1 minute at 12,000 £ g. Flowthrough
was discarded, 500 mL Buffer AW2 (QIAGEN) were added and
the column was spun for 3 minutes at 20,000 £ g. The column
was moved to a sterile 1.5-mL microfuge tube for eluate collec-
tion. Two hundred mL Buffer AE (QIAGEN) were added to the
column, which was incubated at room temperature for 1 minute
before centrifugation for 1 minute at 12,000 £ g. The eluate was
added back to the column and centrifuged a second time for
1 minute at 12,000 £ g to increase DNA yields. All samples
were quantified on a Nanodrop-1000 (Thermo Fischer Scientific,
Waltham, Massachusetts, USA).

Illumina sequencing and analysis
Samples containing 27–50 ng DNA from each extraction

were sent to Argonne National Laboratory for downstream
amplification and sequencing, as described in McKenney et al.26
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The PCR primers 515F (GTG-CCA-GCM-GCC-GCG-GTA-
A) and 806R (GGA-CTA-CHV-GGG-TWT-CTA-AT) were
used to amplify the v4 region of 16S rRNA with length »300 bp
for 150 bp paired-end sequencing on the Illumina MiSeq plat-
form according to the methods of Caporaso et al.27 Forward and
reverse Illumina reads were joined using ea-utils.28 A total of
10,296,305 16S rRNA sequences were joined from the forward
and reverse reads; only the joined reads were used in our analysis.
A fastq file containing these joined reads was deposited in the
NCBI Sequence Read Archive under BioProject ID
PRJNA270622. Joined 16S rRNA sequence reads were demulti-
plexed and analyzed using Quantitative Insights Into Microbial
Ecology (QIIME, v1.8.0)29 to classify microbial constituents and
compare membership between samples.30 Quality filtering was
performed using default settings and the input sequence file was
split into libraries using 12 bp barcodes. A total of 2,637,412
sequences (an average of 82,419 per sample) passed quality filter-
ing thresholds. The range of sequences that passed quality filter-
ing thresholds was 68,491 to 139,715 for 28 of the samples.
However, the remaining 4 samples had less than 30 sequences
each (range 5 to 23; average D 14.25), and these 4 samples were
excluded from the study. Elimination of these samples from the
study was the only measure taken to control for the effects of dif-
fering sequencing depth. This left Group S with 8 animals colo-
nized with helminths and 7 uncolonized, and Group L with
6 animals colonized with helminths and 7 uncolonized.

The remaining sequences were classified into operational taxo-
nomic units (OTUs, a proxy for taxa based on 97% sequence
similarity) using the Uclust method31 and identified using the
Greengenes 13_8 database.29 Sequences from some OTU’s of
interest which were not identified at the genus level in the Green-
genes database were subsequently evaluated using SeqMatch.32

QIIME was then used to calculate the number and abundances
of OTUs (using the Greengenes identifications) to summarize

the total unique bacterial lineages per sample and their relative
frequencies (richness and a diversity, respectively), as well as the
net lineage difference between any 2 or more experimental
groups (b diversity). Beta diversity was quantified using weighted
UniFrac,33 which measures the proportion of branch lengths
shared between samples. Here we report the b diversity between
treatment groups. Diversity data was analyzed using a 2-way
ANOVA and post-hoc t-tests in JMP� Pro (Version 11, SAS
Institute Inc., Cary, NC, 1989–2013) to test for the effect of
treatment variables on microbial diversity. An a of 0.05 was used
as the threshold for significance. Principle Coordinate Analyses
(PCoA, in QIIME) was also performed on the gut microbiome b
diversity to detect underlying relationships between the micro-
biome and treatment variables. Finally, Linear discriminant anal-
ysis Effect Size (LEfSe)34 was calculated to identify bacterial
lineages whose frequencies differ significantly as a function of
treatment variables. LEfSe detects differentially distributed line-
ages with the Kruskall-Wallis test, then checks the consistency of
subclass distinctions with the pairwise Wilcoxon text. The final
linear discriminant analysis was used to rank all differentiating
lineages by their effect size.
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