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A necessarily complex model to explain the
biogeography of the amphibians and reptiles
of Madagascar
Jason L. Brown1,w, Alison Cameron2, Anne D. Yoder1 & Miguel Vences3

Pattern and process are inextricably linked in biogeographic analyses, though we can observe

pattern, we must infer process. Inferences of process are often based on ad hoc comparisons

using a single spatial predictor. Here, we present an alternative approach that uses mixed-

spatial models to measure the predictive potential of combinations of hypotheses. Biodi-

versity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy

amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major bio-

geographic hypotheses, we show that mixed models greatly improve our ability to explain the

observed biodiversity patterns. We conclude that patterns are influenced by a combination of

diversification processes rather than by a single predominant mechanism. A ‘one-size-fits-all’

model does not exist. By developing a novel method for examining and synthesizing spatial

parameters such as species richness, endemism and community similarity, we demonstrate

the potential of these analyses for understanding the diversification history of Madagascar’s

biota.
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I
nterpreting the spatial distribution of biodiversity is
fundamental to the study of biogeography, macroecology,
evolutionary biology and conservation biology1,2. Core

concepts include local and regional endemism, species richness,
and species turnover, of which the two latter correspond to
alpha- and beta-diversity as used in community ecology3,4. In
different combinations, these core concepts are invoked to
identify biogeographic regions5–7, prioritize geographic areas for
conservation8,9, assess the effects of conservation measures10

and/or delimit centres of speciation or extinction11. Areas of high
species endemism are typically interpreted to be centres of
speciation, though it is often unappreciated that these ‘areas of
endemism’ are the result of numerous interacting processes that
are not explicitly accounted for in the derivation of the
measurement. Thus, we frequently oversimplify the dynamic
and complex interactions among organisms and their
environment. In practice, it is generally assumed that species
formation and diversification of a range of co-distributed taxa will
be either triggered or inhibited by analogous barriers to gene flow,
topographical and geological settings, climatic conditions and
shifts and/or competition. Accordingly, it is the default
expectation that equivalent barriers (for example, rivers,
ecotones, climatic transitions) will lead to congruent patterns of
species endemism, turnover and richness—again, with the
underlying assumption that the observation of similar patterns
among diverse species reveals a general causal mechanism of
diversification across all taxa. However, there are additional
processes by which species richness may be generated that can act
in concert with or in opposition to biogeographic barriers. For
example, climatic factors, environmental stability, land area,
habitat heterogeneity, palaeogeography and energy available can
be spatially correlated with these barriers but not causally related
to diversification12. Although it seems obvious that such patterns
are caused by multiple mechanisms, biogeography researchers
often rely on ad hoc and narrative comparisons with spatial
distributions of single environmental variables such as centres of
historical habitat stability13, climate, topography, vegetation or
other assumed barriers to dispersal in searching for an assumed
prevalent explanatory factor.

Methodological advances are being developed to address
the problems of non-uniformity and non-independence. For
example, assessments of spatial biodiversity have typically used
simple geographic measures as the unit of analysis, such as
the distribution range of individual species, though recent
methodological refinements include the integration of
phylogenetic relationships among species and their evolutionary
age2,7. Moreover, carefully parameterized species distribution
models can generate accurate estimates of species ranges14

and novel, more objective, approaches are being developed
to translate patterns of species richness, endemism and turnover
for determining those biogeographic regions in greatest
need for conservation and protection2,7,8,15–17. Although
biological explanation of these patterns is still in its
methodological infancy, considerable recent development of
conceptual and statistical tools now allows for integrative
multivariate approaches to more realistically estimate underlying
processes.

Madagascar is the world’s fourth largest island and hosts an
extraordinary number of endemic flora and fauna. For example,
100% of the native species of amphibians and terrestrial
mammals, 92% of reptiles, 44% of birds and 490% of flowering
plants occur nowhere else18. This megadiverse microcontinent,
initially part of Gondwana, has been isolated from other
continents since the Mesozoic. Its current vertebrate fauna is a
mix of only a few ancient Gondwanan clades and numerous
younger radiations, originating from Cenozoic overseas

colonizers arriving mainly from Africa19–21. The extraordinary
proportion of family-level endemism in Madagascar, and the long
isolation from non-Malagasy sister lineages, provide a unique
opportunity to study the mechanisms driving divergence and
diversification in situ22. Over the past decade, numerous
mechanisms and models have been formulated to explain
biodiversity distribution patterns and species diversification in
Madagascar, pertaining to environmental stability (or instability),
solar energy input, geographic vicariance triggered by
topographic or habitat complexity, intrinsic traits of organisms
or stochastic effects23–31. Evidence has supported numerous
hypotheses, though this evidence has typically been marshalled
from limited taxa or groups of taxa with restricted phylogenetic
diversity. Moreover, comprehensive statistical approaches
comparing their relative importance are rare32.

In this paper, we seek to identify the causal mechanisms that
determined the spatial distribution of Madagascar’s herpetofauna
by employing recent techniques that explicitly incorporate
improved statistical rigour. We apply an integrative approach to
simultaneously test which of the several competing and
complementary hypotheses are most strongly correlated with
empirical biodiversity patterns (Fig. 1). We first translate a total of
12 diversification mechanisms or diversity models into explicit
spatial representations. We then use univariate regressions and
multivariate conditional autoregression models to assess spatial
concordance of these predictor variables with species richness,
endemism and turnover as calculated from original occurrence
data of Madagascar’s amphibians and reptiles. Our results best
agree with the hypothesis that various assemblages of species are
under the influence of differing causal mechanisms, and that the
distribution of diverse organismal lineages will depend on
idiosyncratic factors determined by their specific organismal
life-histories combined with stochastic historical factors. Thus,
any model that endeavors to explain island-wide patterns must
necessarily be complex.

Results
Range sizes. Mean range size (±s.d.) in our data set is
smaller in amphibians than reptiles taking into account all
species (41,673±55,413 km2 versus 50,205±84,078 km2; unequal
variance t-test, n¼ 679, df¼ 649.7, t¼ 3.981, Po0.001) and after
excluding species known from only one or two localities
(64,106±57,532 km2 versus 95,294±87,495 km2; unequal
variance t-test, n¼ 453, df¼ 427.4, t¼ 4.511, Po0.001). Micro-
endemics (species with distributions less than 1,000 km2) con-
stitute 36.5% of all amphibian and 33.6% of all reptile species in
Madagascar (difference not significant; binomial test, n¼ 226,
z¼ 0.411, P¼ 0.682).

Spatial biodiversity patterns. Species richness is highest in the
eastern rainforest for both groups (Fig. 2a,e); in reptiles, species
richness is more evenly distributed across the rainforest biome,
with the area of high richness extending further into the north,
west and southwest. Spatial patterns of endemism in both groups
(Fig. 2b,f) reveal two centres of endemism, in the north around
the Tsaratanana Massif and in the central east. Endemism values
for reptiles are also high in southwestern Madagascar, the most
arid region of the island.

We applied Generalized Dissimilarity Modelling (GDM)33,34 to
identify areas of endemism on the basis of turnover patterns for
reptiles and amphibians together. The GDM model captured
64.4% of deviance explained. The top climatic predictors of
species turnover (and percent of contribution to model) were:
maximum temperature of warmest month (21.3%), precipitation
of warmest quarter (19.1%), temperature seasonality (17.5%) and
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precipitation of driest month (12.0%). Given that the deviance
explained is similar to other robust GDMs35, but not near 100%,
non-climatic species-specific idiosyncrasies were retained in input
data and support the use of the methods here. The major areas of
endemism obtained in a 4-class categorization of the originally
continuous GDM results (Fig. 2h,g) largely mirrors the
bioclimatic regions of Cornet36.

Biogeography hypotheses. Our test includes a total of 12 pre-
dictor hypotheses, some of which focus on the geographical
pattern in which species diversity is distributed, but without
making any clear assumption about how the species originated
(for example, the Mid-domain or Topographic Heterogeneity
hypotheses). Others explicitly refer to mechanisms of diversifi-
cation and make predictions about how these processes affected
the distribution of species diversity over geographical space36 (see
Supplementary Methods and Supplementary Table 1 for detailed
accounts). We divided the hypotheses into two categories: one

for which continuous two-dimensional spatial richness and
endemism can be derived, and the other for which only
nominal areas of endemism predictions can be derived. The
first category includes: Climatic Stability, Climate Gradient,
Disturbance Vicariance, the Mid-domain Effect, Montane
Species Pump, Museum, Refuge, Sanctuary and Topographic
Heterogeneity. The second category includes climate gradient
(also depicted as a continuous hypothesis), Riverine Barrier
(minor and major rivers), River-Refuge and Watershed. All these
hypotheses were transformed into explicit spatial representations
(Supplementary Note 1, Supplemental Data 1 and 2) and used as
predictor variables for further analyses.

Spatial statistics. We calculated unbiased correlation of the
continuous predictor and test variables following the method of
Dutilleul37, which reduces the degrees of freedom according to
the level of spatial autocorrelation between two variables
(Supplementary Table 2).
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Figure 1 | Overview of work protocol and dataflow. Three types of original data were input into the analyses: (1) biogeography hypotheses, (2) geography

and climate data and (3) species locality data. These data were used to predict the distributions of species, and the distribution models were used to

calculate biodiversity patterns (species richness, corrected weighted endemism and turnover). We then tested for the correlation of these biodiversity

patterns with spatial predictions derived from biogeography hypotheses, and used a mixed model to simultaneously test the influences of these hypotheses

on the biodiversity patterns. *The response variables constituted standardized PCs of the raw biogeography hypotheses. ** The CAR models were iterated

until only response variables that contributed significantly to the model were included. Then, the remaining variables were backward eliminated, starting

with variables with smallest bs, until the AICc of the reduced model exceeded the more complex model.
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Measures of reptile and amphibian endemism were both
significantly correlated with the Topographic Heterogeneity and
Museum hypotheses. Amphibian endemism was also uniquely
correlated to the Montane Species Pump, Disturbance Vicariance
and Sanctuary hypotheses (Supplementary Table 2). Correlations
with species richness were not tied to measures of endemism.
Whereas reptile and amphibian species richness both correlate
with the Sanctuary and Museum hypotheses, the reptiles uniquely

correlate with the Mid-domain Effect (distance), and amphibians
uniquely with the Topographic Heterogeneity, Montane Species
Pump, Disturbance Vicariance and River-Refuge hypotheses.

In the univariate correlation analyses (Table 1), we compared
the biogeographic zonation of Madagascar as suggested by the
GDM analysis of amphibian and reptile distributions (Fig. 2c,h)
with nominal zonations derived from five predictor hypotheses
(Supplementary Fig. 1). We found the predictor variables
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Figure 2 | Observed biodiversity data. Reptile species richness (a) and endemism (b). Amphibian species richness (c) and endemism (d). Species

richness measures the number of species present. Endemism standardized by the local species richness and reflects the proportion of unique species

present within certain areas. The GDM analyzes compositional turnover of communities (here jointly for amphibians and reptiles) and predicts dissimilarity

throughout the landscape based on an interpolation of variation in climate and geographic data. (e) The 15-class GDM depicts major and minor areas of

endemism. (f) The dendrogram depicts the relationships of each of the 15 classes, where sister groups comprise communities of the highest similarity. (g)

The classified GDMs were generated from the continuous GDM (preclassification). This map depicts a continuous landscape where community similarity

is analogous to colour space distance and the more similar colours characterize similar communities. (h) The 4-class GDM depicting major areas of

endemism based on a hierarchical classification.
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corresponding to the two Riverine hypotheses and the Gradient
hypothesis to be significantly correlated with both the 15- and
4-class GDMs. In addition, the River-Refuge hypothesis was
significantly correlated with the 15-class GDM. Only the
Watershed hypothesis was not correlated with either classification
of the GDM. Both GDM classifications share the most overlap
with the Gradient and the two Riverine hypotheses (25.8–28.8%,
and 47.7–55.6%, for the 4- and 15-class GDMs, respectively;
Table 1).

Mixed spatial models of biodiversity patterns. Given the
significant correlation of each of the spatial amphibian and reptile
biodiversity patterns with various predictor variables, we used
mixed conditional autoregressive spatial models (CAR models)
to test the influences of various predictors simultaneously
(Supplementary Fig. 2). To avoid over-parameterization, we used
AICc (corrected Akaike Information Criterion), an information-
theoretical approach, to compare models with different sets of
predictors. We found that complex models including most of the
biogeography hypotheses (that were representable as continuous
predictor variables) performed best, based on the lowest AICc
values and consequently used these for further analysis. Detailed
contributions of each predictor to the models of species richness,
endemism and GDM zonation are summarized in Supplementary
Table 3. The top-five variables contributed 49.4–75.9% to the
models (Supplementary Table 3). For a more simplified graphical
representation (Fig. 3), we summarized the three Mid-domain
Effect hypotheses (latitude, longitude and distance), the three
principal components (PCs) representing the Gradient hypoth-
esis, and three hypotheses focused on topography (Topographic
Heterogeneity, Disturbance Vicariance, Montane Species Pump),
respectively (Figs 3 and 4). We found relevant influences of the
Mid-domain Effect especially on the GDM, and on the species
richness and endemism of reptiles (30.9, 32.9 and 45.5%,
respectively). However, it is important to point out that almost all
the Mid-domain correlation coefficients were negative. Thus,
indicating that factors determining spatial patterning were those
inversely correlated with latitudinal and longitudinal Mid-domain
Effects, that is, favouring endemism and richness at the edges
rather than centre of the domain. Climate Gradient effects
influenced all the models of biodiversity equally, contributing
roughly a quarter to each (25.1–27.7%), though in many cases the

sign of the contribution varied. However, in this case, a positive
correlation was not expected. The topography variables con-
tributed positively to the richness and endemism models of

Table 1 | Correlations of nominal biodiversity hypotheses to GDMs.

Boundary coincidence

Measured border
overlap %

Expected random overlap range
(upper CL–lower CL %)

Number of
border units

P value Strength: r from
upper CL

Correlation to 4-Class GDM
Riverine—Major 25.8 22.2–14.2 302 o0.001 1.89
Riverine—Minor 25.8 21.0–15.4 501 o0.001 3.31
Gradient 28.8 20.5–15.7 604 o0.001 6.70
Watershed 20.0 21.6–14.9 370 0.129 *
River—Refuge 19.0 22.3–14.2 316 0.298 *

Correlation to 15-Class GDM
Riverine—Major 51.0 43.1–33.1 302 o0.001 3.15
Riverine—Minor 47.7 41.7–34.5 501 o0.001 3.39
Gradient 55.6 41.1–35.1 604 o0.001 9.39
Watershed 35.4 42.4–33.8 370 0.872 *
River—Refuge 48.7 43.0–33.2 316 o0.001 2.32

CL, confidence limits; GDM, Generalized Dissimilarity Modelling.
The observed border overlap is depicted as a percentage of shared borders (percentage of shared sampling points relative to each biodiversity hypothesis). The expected border overlap range depicts upper and
lower cofindence limits (a¼0.05) of a simulated random placement of boundaries relative to length and number of the boundaries in each area of endemism hypothesis. Significance reflects the proportion
that the measured border overlap was matched (or exceeded) in the border randomizations. Strength of significance was measured by counting the number of s.d. between the measured border overlap values
and the upper confidence limits. A large value depicts a higher correlation (non-random association) between the GDM and area of endemism hypotheses. *values fell within confidence limits.
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amphibians and reptiles, with joint influences of 9.1 and 22.4% on
richness, and 6.5 and 17.3% on endemism. The Sanctuary and
Museum hypotheses each contributed positively to all models,
with Museum contributing between 7.1 and 17.1% (one of the few
hypothesis to contribute 45% and to be positively correlated to
all biodiversity measurements in the mixed models). The Sanc-
tuary hypothesis also contributed positively to all mixed models,
though to a lesser degree than the Museum hypothesis, and with a
very low contribution to reptile endemism.

To assess variation in biogeography patterns among major
groups of the Malagasy herpetofauna, we calculated mixed CAR
models using the same methods for richness and endemism of
four exemplar sub-clades: the leaf chameleons (Brookesia), tree
frogs (Boophis), day geckos (Phelsuma) and iguanas (Oplurus
with the monotypic iguana genus Chalarodon). The top
contributors to the models were drastically different for several
of these clades (Fig. 4 and Supplementary Table 4). For instance,
the topography variables had strong influences on Boophis
richness, with a joint contribution of 24.5%, but contributed
much less to explaining the patterns of most other groups.
Further, the Sanctuary hypothesis had a strong influence on the
Brookesia and Oplurus models, though it contributed very little to

the predictions of endemism in Boophis and Phelsuma. Mid-
domain Effects were apparent in most models, but the sign of the
correlation and the contribution of each Mid-domain hypothesis
varied considerably. Thus, the explanatory power of this
stochastic null-model is limited.

Discussion
We propose a novel method for examining and synthesizing
spatial parameters such as species richness, endemism and
community similarity. In this framework, biogeographic hypoth-
eses are explanatory variables. The resulting mixed-model
geospatial approach to biogeographic analyses is both more
robust and more realistic. Our approach accounts for biological
complexity in searches for prevalent factors influencing the
distribution of biodiversity, both in Madagascar and elsewhere.
It considerably extends univariate and sometimes narrative
approaches that examine the fit of the observed patterns to only
single explanatory models or mechanisms (for example, in
Madagascar27,29,38) or compare a limited number of competing
variables in univariate approaches32. Such analyses might be
hampered by spatial autocorrelation of biodiversity patterns and
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predictor variables thereby inflating type-I errors in traditional
statistical tests39,40. Spatial autocorrelation can be excluded
from models41 as a predictive parameter42–44 or by
incorporating the spatial dependence into the covariance
structure44, as was applied in this study.

The results obtained here for some sub-clades are in agreement
with previous analyses, while others are not. For example, the
high influence of the Mid-domain Effect on Boophis treefrogs,
one of the most species-rich frog genera in Madagascar, agrees
with a previous analysis45 for all Malagasy amphibians (with a
high representation of Boophis). On the contrary, the negative
contributions of the Mid-domain Effects on the biodiversity
patterns of the other genera in the analysis are not surprising
given that their centres of richness and endemism are in either
southern or northern Madagascar, but not in central parts of the
island. Previous studies postulated a high influence of topography
on the diversification of leaf chameleons (Brookesia)38,46, though
this is not supported by our analysis. This latter example
exemplifies a dilemma of scale, inherent in all comparisons of
spatial data sets. In fact, the distribution of Brookesia is highly
specific to certain mountain massifs in northern Madagascar,
while the genus is largely absent from the equally topographically
heterogeneous south-east. This absence is probably due to its
evolutionary history, with a diversification mainly in the north
and limited capacity for range expansion38. This historical
distribution pattern probably accounts for low influence of the
topographic hypotheses on Madagascar-wide Brookesia richness
and endemism, while at a smaller spatial scale (northern
Madagascar) these hypotheses might well have a strong
predictive value.

While patterns of richness and endemism of the Malagasy
herpetofauna have been analysed several times for various
purposes based on partial data sets8,29,32,38,45, the analysis
of turnover of species composition and the definition of
biogeographic regions following from such explicit analyses are
still in their infancy. For reptiles, Angel’s47 proposal of
biogeographic regions based on classical phytogeography
(regions based on plant community composition48) has usually
been adopted49. Later, Schatz50 refined this zonation of
Madagascar based on explicit bioclimatic analyses, and Glaw
and Vences51 proposed a detailed geographical zonation based on
the areas of endemism of Wilme27. The GDM approach herein is
the first explicit analysis of a large herpetofaunal dataset to
geographically delimit regions distinguished by abrupt changes in
the amphibian and reptile communities. This model turned out to
agree remarkably well with classical bioclimatic and
phytogeographic zonations of Madagascar48,50, and is strongly
correlated to climatic explanatory variables (Fig. 3). Especially in
the 4-class GDM, the regions almost perfectly correspond with
those proposed by Schatz50 based on bioclimate, that is, eastern
humid, central highland/montane, western arid, south-western
subarid zones. Although the coincidence of the precise
boundaries of these regions might be methodologically
somewhat biased, as we interpolated community distribution
using climate variables in the analysis, the model is still mainly
based on real distributional information of species and thus
provides important insights into diversification patterns of
Malagasy reptiles and amphibians.

Several authors have suggested that the current distribution of
biotic diversity in the tropics resulted from a complex interplay of
a variety of diversification mechanisms52,53. This implies that
no single hypothesis adequately explains the diversification of
broad taxonomic groups—our results support this assumption.
Richness, endemism and turnover of large and heterogeneous
groups exemplified by the all-species amphibian and reptile data
sets were in all cases best explained by complex CAR models.

These models have the advantage of simultaneously incorporating
most or all of the originally included explanatory variables and
thereby accounting for possible autocorrelation among them
(as implemented here).

Several alternative explanations may account for this outcome.
Patterns of biodiversity may not be strongly correlated to any of
the predictor mechanisms simply because none of them provide
the causal mechanism underlying the diversification processes. As
another consideration, spatial predictions of some of the
biodiversity hypotheses may have been inaccurate, though we
took great care to avoid such mistakes. In any event, improve-
ments in these methods may result in different outcomes in
future analyses.

Caveats aside, the results of this study almost certainly support
a third explanation that different clades of organisms are each
predominantly influenced by a different set of diversification
mechanisms. In turn, these are driven by intrinsic factors, such as
morphological or physiological constraints, or by extrinsic
factors, such as an initial diversification in an area characterized
by a certain topography, climate or biotic composition. This
alternative is supported by the observation that the patterns of
several of the smaller subgroups in our analysis were indeed best
explained by opposing predominant variables, for example,
Topographic Heterogeneity and Museum (Boophis endemism)
versus Climate Stability and Sanctuary (Brookesia endemism). An
overarching message is that the taxonomic scale of analysis is of
extreme importance when attempting to derive global explana-
tions of biodiversity distribution patterns. Including too many
taxa will blur the existing differences among clades and lead to
complex explanatory models, whereas patterns within specific
clades may be best explained by simple models.

The method proposed herein allows for a more objective
quantification of the influences of particular diversification
mechanisms on biodiversity patterns, compared with traditional,
univariate approaches. Further developments of the method
should especially focus on including a phylogenetic dimension,
and when appropriate (for predictor hypotheses), a temporal
component. Geospatial analyses of biodiversity pattern typically
use species as equivalent and independent data points, though in
reality, they are entities with substantial variation in parameters
such as evolutionary age, dispersal capacity and population
density, and with different degrees of relatedness depending on
their position in the tree of life. This multilayered information
can be included in various ways in the CAR/Orthogonally
Transformed Beta Coefficients approach (detailed in methods),
for example, by plotting richness and endemism of evolutionary
history rather than taxonomic identity, calculating turnover only
for sister species with adjacent ranges or repeating the
calculations for sets of species defined by particular nodes on a
phylogenetic tree. This latter approach—iterating the analysis for
successively more inclusive clades—appears particularly promis-
ing for identifying those moments in evolutionary history
wherein shifts in prevalent diversification mechanisms have
occurred. Finally, a recent spatially explicit model of geographic
range evolution and cladogenesis suggests that non-constant rates
of speciation can be a direct consequence of the apportioning of
geographic ranges that accompanies speciation54. Conversely, it
will be of high interest to test which kinds of spatial biodiversity
patterns might arise under different speciation scenarios and their
stochastic variation.

Our study confirms the obvious assumption that spatial
biodiversity patterns differ between major clades of organisms
such as amphibians and reptiles, but also among sub-clades that
evolved under different selection pressures due to their life-
histories. By developing a novel method for simultaneously
considering different causal processes, we can begin to tease apart
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the diversification histories of individual clades versus prevailing
biogeoclimatic events that shape entire biotas. Accordingly, we
can identify the circumstances under which life history traits
versus stochastic environmental effects influence the course of
evolution, and also, the settings under which selection shapes
these life history traits.

Methods
Species distribution modelling. To understand spatial distribution patterns in
Madagascar’s herpetofauna, we first compared range sizes, and computed species
richness and endemism from the modelled distribution areas of amphibians and
non-avian reptiles (herein called reptiles). Species data consisted of 8,362 occur-
rence records of 745 Malagasy amphibian and reptile species (325 and 420 species,
respectively). Species distribution models were limited to species that had, at
minimum, three unique occurrence points at the spatial resolution (0.91 km2). The
reduced dataset represented 453 species (consisting of 5,440 training points of 248
reptile and 205 amphibian species) with a mean of 12 training points per species
(max¼ 131). For 107 amphibian and 119 reptile species with only one to two
occurrence records, a 10-km buffer was applied to point localities in place of
modelling. The species distribution models were generated in MaxEnt v3.3.3e
(ref. 55) using the following parameters: random test percentage¼ 25,
regularization multiplier¼ 1, maximum number of background points¼ 10,000,
replicates¼ 10, replicated run type¼ cross validate, threshold¼minimum training
presence.

One limitation of presence-only data species distribution modelling methods is
the effect of sample selection bias, where some areas in the landscape are sampled
more intensively than others56. To optimize performance MaxEnt requires an
unbiased sample. To account for sampling biases, we used a bias file representing a
Gaussian kernel density of all species occurrence localities sampled at 1 decimal
degree search radius57. The bias file up-weighted presence-only data points with
fewer neighbours in the geographic landscape58. Species distributions were
modelled for the current climate using the 19 standard bioclimatic variables
(Worldclim 1.4 (ref. 59)). Non-climatic variables (geology, aspect, elevation, solar
radiation and slope) were also included60,61. All layers were projected to Africa
Alber’s Equal-Area Cylindrical projection in ArcMap at a resolution of 0.91 km2.

Correcting species distribution models for overprediction. To limit geo-
graphical over-prediction of species distribution models, a problem common with
modelling distributions of biota across regions with many biomes or centres of
endemism8,32, we clipped each model following the approach of Kremen et al.8

This method produces models that represent suitable habitat within an area of
known occurrence (based on a buffered minimum convex polygon (MCP) of
occurrence localities), excluding suitable habitat greatly outside of observed range.
The size of the buffer was based on the area of the MCP. We used buffer distances
of 20, 40 and 80 km, respectively, for three MCP area classes, 0–200, 200–1,000 and
41,000 km2. All corrected species distribution models were proofed by taxonomic
experts to ensure reliability; if a model did not tightly match knowledge of areas
where distributions were well documented, or if little prior information existed
regarding a species distribution or taxonomy was convoluted, and because of, its
expected distribution could not be evaluated, the species was excluded from
analyses (n¼ 71).

Range sizes. For descriptive range-size statistics, distribution range sizes were
sampled for all species at ca. 1 km2 from corrected species distribution models (or
buffered point data where applicable) and a Student’s t-test with unequal variance
was performed between amphibian and reptile species. To assess differences in the
frequency of microendemics among the two groups, we converted all distributions
that were 4or r1,000 km2 to a value of 0 and 1, respectively. We then calculated
the mean frequency for both groups and ran a binomial test among both groups.
Species richness was calculated separately for amphibians and reptiles by summing
the respective corrected binary species distribution models (based on a minimum
training presence threshold) and, for species with one to two occurrence records,
buffered points in ArcGIS. This provided a high-resolution estimate of richness
that is less affected by spatial scale and incomplete sampling than traditional
measurements based solely on occurrence records.

Species richness and corrected weighted endemism. Measures of endemism
are inherently dependent on spatial scale. We chose a grid scale of 82� 63 km,
separating Madagascar into 24 latitudinal and eight longitudinal rows, to reduce
problems associated with estimating endemism over too small or large areas11,29.
Specifically, this spatial scale was chosen so that we calculated a landscape-level
measure of endemism (versus fine-scale regional differences). Endemism was
measured as corrected weighted endemism (CWE), where the proportion of
endemics are inversely weighted by their range size (species with smaller ranges are
weighted more than those with large62) and this value divided by the local species
richness11. We chose CWE over the alternative measure of (uncorrected) Weighted
Endemism because it emphasizes areas that have a high proportion of animals with

restricted ranges, but not necessarily high species richness, and is therefore a largely
independent spatial key measure of biodiversity. We calculated CWE separately for
reptiles and amphibians using SDMtoolbox v1 (ref. 57).

GDM. GDM is a statistical technique extended from matrix regressions designed to
accommodate nonlinear data commonly encountered in ecological studies33. One
use of GDM is to analyse and predict spatial patterns of turnover in community
composition across large areas. In short, a GDM is fitted to available biological data
(the absence or presence of species at each site and environmental and geographic
data) then compositional dissimilarity is predicted at unsampled localities
throughout the landscape based on environmental and geographic data in the
model. The result is a matrix of predicted compositional dissimilarities (PCD)
between pairs of locations throughout the focal landscape. To visualize the
predicted compositional dissimilarities, multidimensional scaling was applied,
reducing the data to three ordination axes and in a GIS, each axis was assigned
a separate RGB colour (red, green or blue).

Due to computation limitations associated with pairwise comparisons of large
datasets, we could not predict composition dissimilarities among all sites in our
high resolution Madagascar data set. To address this, we randomly sampled 2,500
points throughout Madagascar from a ca. 10 km2 grid. We then measured the
absence or presence of each of the 679 species at each locality. We used the same
high-resolution environmental and geography data used in the species distribution
model. These 23 layers were reduced to nine vectors in a PC analyses, which
represented 99.4% of the variation of the original data. These data were sampled at
the same 2,500 localities. Both data (species presence and environmental data) were
input into a GDM using the R package: GDM R distribution pack v1.1
(www.biomaps.net.au/gdm/GDM_R_Distribution_Pack_V1.1.zip). We then
extrapolated the GDM into the high resolution climate dataset by assigning
ordination scores using k-nearest neighbour classification (k¼ 3, numeric
Manhattan distance), calculating each ordination axes independently33.

The continuous GDM was transformed into a model with four major classes,
and each of these was then classified separately into three–five minor classes. The
numbers of major and minor classes were based on hierarchical cluster analyses in
SPSS v19 (ref. 63) using a ‘bottom up’ approach. The number of classes equaled the
number of dendrogram nodes with relative distances (scaled from 0 to 1) at 0.71
and 0.63 for major and minor groups, respectively. The distance cutoff can be
somewhat arbitrary; however, in our data there were obvious discontinuities (long
dendrogram branches between nodes) at these two values. The resulting classified
models were interpolated into high resolution climate space using a k-nearest
neighbour classification as described above.

Biogeography hypotheses. In a GIS, spatially explicit predictions of the three
biodiversity patterns (species richness, endemism and areas of endemism)11,64,65

were estimated for each biogeography hypothesis. For some of the hypotheses, not
all three metrics of biodiversity were calculated due to lacking, or incomplete,
expectations (for example, not all hypotheses make predictions about areas of
endemism). Because of these incomplete biodiversity pattern predictions,
comparisons among hypotheses are statistically complex. This is in part because
few diversification hypotheses capture all facets of biodiversity (species richness,
endemism, areas of endemism). Further, many estimates of biodiversity patterns
rely on components of climate or geography, thus some are based on the same data
and are not entirely independent of each other. Each hypothesis was generated at
the spatial resolution of 30-arc-seconds (matching the resolution of GDM and
species richness estimates, later transformed to 0.91 km2). For the endemism
analyses, each biogeography hypothesis was upscaled to match resolution of the
endemism analyses by averaging all values encompassed in each cell.

Spatial statistics. The spatial predictions derived from the various biodiversity
hypotheses resulted in either continuous or nominal categorical data. Conducting
statistical tests between data types is non-trivial and, in some cases, not logical or
impossible, as these will be represented in GIS in different formats (raster and
vector), and vector data furthermore can be represented by points, lines or
polygons. We therefore conducted the following separate analyses to test for the
influences of such different data types.

Analyses of continuous data. To assess a global measurement of correlation
between continuous data, we calculated Pearson correlations following the
unbiased correlation method of Dutilleul37 and using the software Spatial Analysis
in Macroecology66.

Analyses of nominal categorical data. Comparisons of nominal categorical
spatial data (that is, areas of endemism predictions compared with the classified
GDMs) focused on the spatial distributions of the borders between the subunits.
Here, we asked whether turnover, as measured by our classified GDMs, occurs
across similar distances with the area of endemism regions. We measured the
proportion of border overlap and then the significance of this overlap using Monte
Carlo spatial statistics. Madagascar was evenly sampled at 20 km2 resulting in 1,911
sampling points. The country outline, and associated points, were excluded from all
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comparisons to focus analyses on the intracountry borders. The remaining 1,610
points were used in the Monte Carlo analyses of boundary overlap. To assign
borders to the spatial sampling points, a 10-km buffer was applied to simplified
polylines of each nominal hypothesis and all points within this buffer were
classified as a border. This sampling regime applied a single point to each corre-
sponding segment of the area of endemism boundaries. Depending on the
hypothesis, the number of points depicting borders ranged from 302 to 604 units.
The 4- and 15-class GDM zones were depicted by 292 and 613 points, respectively.
Each hypothesis was compared with both GDM point datasets and shared borders
were counted. To assess significance, Monte Carlo analyses shuffled the spatial
location of the area of endemism borders among the 1610 sites (n¼ 10,000) and
each iteration, the number of shared border points were counted. The frequency
that randomized dataset exceeded the observed overlap was used to estimate the
significance of the relationship between the classified GDM and each area of
endemism hypothesis.

Mixed models of continuous data. To determine the influence of each biogeo-
graphy hypothesis in predicting the observed biodiversity patterns, we integrated
all continuous biogeography hypotheses into a single mixed CAR using the soft-
ware Spatial Analysis in Macroecology66. To normalize the predictor variables,
Box–Cox transformations67 were performed. The lambda parameter was estimated
by maximizing the log-likelihood profile in R package GeoR44. A Gabriel
connection matrix was used to describe the spatial relationship among sample
points68. Using Gabriel networks, short connections between neighbouring points,
are preferable (that is, more conservative69) than using inverse-decaying distances
because in most empirical datasets the residual spatial autocorrelation tends to be
stronger at smaller distance classes70.

The main goal of our mixed spatial analyses were to determine the combination
of biogeography hypotheses that best predict the observed biodiversity patterns.
If each explanatory variable was incorporated natively, due to considerable multi-
colinearity, often only a few variables would end up contributing to a majority of
the model. To estimate the true contribution of each hypothesis in context of a
mixed model (even if highly correlated to others), we developed a novel approach
that removes colinearity from the response variables (but in the process explicit
variable identity is temporarily lost). The transformed response variables are then
run in a CAR analysis and the resulting standardized model contributions are then
transformed back into original response variable identities; reflecting the relative
contribution of each in the model. This method is herein called Orthogonally
Transformed Beta Coefficients.

Orthogonally transformed beta coefficients. Each biogeography hypothesis was
standardized from zero to one. This ensured that the component loadings reflected
the relative contribution of each biogeography hypothesis. A PC analysis was
performed on the standardized biogeography hypotheses using a covariance
matrix. All the resulting PCs were extracted and then loaded as explanatory
variables in the CAR model. The CAR analyses were run iteratively, starting with
all PCs as response variables and then excluding each PC that did not contribute
significantly to the model (a¼ 0.05) until the final model included only PCs that
contributed significantly. These variables were then backward eliminated, starting
with variables with smallest b coefficients, until the AICc of reduced model
exceeded the more complex model. Because each PC represented a linearly
uncorrelated variable, only the relevant, independent data were incorporated into
the final CAR model. The resulting standardized beta coefficients (bj from the CAR
analyses, Fig. 1 and equation 1) were then multiplied by the value of the corre-
sponding component loadings (aij from the PCA, see equation 1). The absolute
value of the product reflects the relative contributions of each biogeography
hypothesis to each PC, which are weighted by the PC’s contribution in the CAR
model (herein termed the weighted component loadings or WCLif, equation 1).
The weighted component loadings (WCLif, equation 1) were then summed for each
biogeography hypothesis across all PCs (Hi) and depict the contributions of each
hypothesis in the CAR model. The Hi value was then converted to percentages
(HPi) to allow comparison among all CAR analyses. A positive or negative
correlation was determined for each biogeography hypothesis by running a
separate CAR analysis using the raw biogeography variables as a single response
variable (all other parameters were matched).

WCLij ¼ bj

��� ���� aij

�� �� Hi ¼
X

i

WCLij HAll ¼
X

ij

WCLij

HPi ¼
Hi

Hall

� �
�100

ð1Þ
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