Illumination of cryptic species boundaries in long-tailed shrew tenrecs (Mammalia: Tenrecidae; Microgale), with new insights into geographic variation and distributional constraints

LINK E. OLSON1*, STEVEN M. GOODMAN1,2 and ANNE D. YODER1,3

1Division of Mammals, Field Museum of Natural History, Chicago, IL, USA
2WWF, B.P. 738, Antananarivo (101), Madagascar
3Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA

Received 21 July 2003; accepted for publication 19 January 2004

The increasing use of mitochondrial DNA (mtDNA) to explore and test species limits among morphologically similar species is potentially compromised by phenomena poorly reflective of organismal history and speciation, including (but not limited to) stochastic lineage sorting and gene flow. In situations where molecular data are only available from a single gene or linkage partition (e.g. mtDNA), corroboration of suspected species boundaries should be sought from independent lines of evidence, such as morphology. Recent attempts to delimit species using mtDNA and morphology have either implicitly or explicitly ignored the possibility that distinct species can occur in direct sympatry throughout much of their range, presumably because such situations are believed to be rare. We examined phylogenetic relationships within the long-tailed shrew tenrecs (Mammalia: Tenrecidae; Microgale spp.) from Madagascar. Current taxonomy recognizes two broadly sympatric species, though as many as six have been described. Given that alpha taxonomy within shrew tenrecs has been controversial, and that patterns of morphological variation can be especially difficult to assess for this group, some authors have suggested that additional cryptic species may exist. To examine this possibility, we conducted a phylogenetic study using the mitochondrial NADH dehydrogenase subunit 2 gene and a morphometric analysis of 29 craniodental, postcranial, and external measurements from a broad geographical sample of long-tailed shrew tenrecs. The two data sets were nearly perfectly congruent in identifying four groups that can be classified as species, thereby doubling the currently recognized number of species. We present previously unrecognized distributional evidence consistent with our conclusions and provide an empirical example of how a revised understanding of species limits alters inferences of geographic variation and species coexistence, particularly with respect to fine-scale habitat partitioning. The results of this study suggest that certain species pairs, previously assumed to be single species occupying broad elevational ranges, are actually reproductively isolated units that are partitioning their environment along elevational lines. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83, 1–22.

boundaries can and should have real world impact. Unfortunately, however, the definition of a species remains one of the most contentious issues in biology (e.g. Otte & Endler, 1989; Hey, 2001; Pigliucci, 2003). Of the more than 20 species concepts described to date (Mayden, 1997), none has met with universal acceptance. The difficulties relate to a range of issues from biological, to conceptual, to operational. Among the various species concepts, morphological distinctiveness remains one of the most operationally feasible and hence widely applied criterion proposed for species recognition, particularly for field applications. One shortcoming of the morphological criterion, however, is the potential for ‘cryptic’ species, i.e. the existence of distinct species, as recognized by historical or biological criteria, for which no discriminating morphological characters have been identified. Such situations can result in the underestimation of species richness and, consequently, the overestimation of intraspecific variability and dispersal abilities.

This problem is not unique to adherents of morphology-based species concepts. The ability to differentiate species morphologically, regardless of the conceptual framework, is desirable to the practitioners of multiple biological subdisciplines (and necessary for many). A number of studies have demonstrated the utility of mitochondrial DNA (mtDNA) sequence variation in illuminating potential species boundaries between morphologically similar or non-differentiable taxa (Avise, 2000). A major problem with this approach is that processes unrelated to speciation (e.g. deep coalescence) may be responsible for patterns such as reciprocal monophyly of mtDNA haplotype lineages within a species as well as for patterns of non-monophyly in reproductively isolated taxa (Avise et al., 1983; Maddison, 1997). Ideally, taxonomic delimitations between closely related species suggested by mtDNA variation should be considered hypotheses to be tested with additional data, whether genotypic or phenotypic (e.g. Ballard, Chernoff & James, 2002).

Given the complexity of the species problem, and the fact that our primary focus is the empirical investigation of the evolutionary history and biogeography of a specific group of organisms, we will not belabour the conceptual and theoretical issues relating to species recognition. Nonetheless, as we are attempting to recognize meaningful evolutionary and biological boundaries within long-tailed shrew tenrecs, a brief statement of our philosophical framework for this investigation is warranted. A restatement of the ‘general lineage concept’ of species (de Queiroz, 1998) best expresses our view of the problem, just as it justifies the operational grounds for recognizing the species-level taxonomy proposed in this study. This articulation simultaneously recognizes the complexity of the problem while providing a conceptual framework for unifying an approach for identifying species in nature. In short, de Queiroz (1998: 64) accomplishes this by defining species as an outcome of the speciation process. ‘At some point during divergence, the lineages cross a threshold beyond which their separation becomes irreversible: they can no longer fuse.’ Although he goes on to show that species can defensibly be recognized at a variety of points along this process, prior to the endpoint, we prefer to take a conservative approach and recognize as species only those lineages that have passed this point of no return. Our operational criteria for doing so include assessments of reproductive isolation (as inferred from sympatric haplotype clades and the ability to differentiate their members morphologically) and obvious periods of evolutionary isolation (as inferred through branch length comparisons within the mtDNA phylogeny).

ORGANISMAL BACKGROUND

Shrew tenrecs (Tenrecidae, Oryzorictinae, genus Microgale) comprise the most speciose genus of mammal on Madagascar (Jenkins, 2003). All are endemic to the island, and most of the 18 currently recognized species are broadly distributed along the eastern forests of Madagascar and are readily collected when appropriate techniques are employed (Raxworthy & Nussbaum, 1994; Goodman, Raxworthy & Jenkins, 1996b). Distributional data for shrew tenrecs are being increasingly utilized in studies investigating both temporal (Goodman et al., 1997) and latitudinal (Lees, Kremen & Andriamampianina, 1999) variation in species richness and the effects of habitat fragmentation on community structure (Goodman & Rakotondravony, 2000). As a consequence of this research activity, the alpha taxonomy within the genus has undergone substantial change in recent years. Since MacPhee’s (1987) revision of the genus, in which 12 of the 22 previously described forms were subsumed, increased field collecting and the concomitant growth of comparative material in museum collections has resulted in both the discovery of new species and the resurrection of others from synonymy (e.g. Jenkins, 1992; Jenkins, Raxworthy & Nussbaum, 1997; Jenkins & Goodman, 1999). A number of confounding factors make species delimitation difficult in shrew tenrecs. First, like many closely related small mammals, shrew tenrec species are typically distinguished from one another based on variation in one or more linear measurements of the skull and/or external body, with few differences observed in qualitative characters (Olson, 1999; Jenkins, 2003). Furthermore, the use of quantitative continuous linear measurements for delimiting species of shrew tenrec is often severely compromised by the difficulty in discriminating adults...
from juveniles (MacPhee, 1987). Finally, although the effect of latitude on species richness in shrew tenrecs (and other taxa) has been studied (Lees et al., 1999), a similar effect on morphological variation has not been investigated. Ecogeographic variation in body size has been well documented in similarly distributed Malagasy primates (Albrecht, Jenkins & Godfrey, 1990), suggesting that comparable phenomena may be present in tenrecs. High levels of intraspecific variability were cited by MacPhee (1987) in his decision to synonymize numerous nominal species of shrew tenrec, yet many of these have since been resurrected. The potential influence of unrecognized geographic variation on attempts to identify morphological species boundaries suggests that future efforts must take intraspecific geographic variation into account (e.g. Puerto et al., 2001).

Nowhere are these issues and their confounding influence on taxonomy better illustrated than in the long-tailed shrew tenrecs, so named for their inordinately long tails, which can exceed twice their head and body length (e.g. Goodman & Jenkins, 1998). Long-tailed shrew tenrecs are currently divided into two species, though as many as six have been described (Table 1). Goodman & Jenkins (1998) recently suggested the occurrence of a bimodal body size distribution in the lesser long-tailed shrew tenrec (Microgale longicaudata), with smaller forms conforming to Thomas’s (1918) original description of M. major as a diminutive counterpart of the former. Unfortunately, as is frequently the case with shrew tenrecs, sample sizes for adult specimens from the localities presented were insufficient to assess this potential revision based on morphology alone. Microgale longicaudata is the widest ranging member of the genus, known to occupy the drier western forests of Madagascar in addition to the humid eastern forests to which most shrew tenrecs are confined (Ade, 1996; S. M. Goodman, unpubl. specimens in Field Museum of Natural History). For this reason, M. longicaudata is believed to be exceptionally vagile among shrew tenrecs, having been collected over a broad geographic range in forested habitats as well as in isolated forest fragments as small as 0.64 ha (Goodman & Rakotondravony, 2000). It is distinguished from the greater long-tailed shrew tenrec (M. principula) by its slightly smaller body and skull sizes. It is often difficult to distinguish the two species, however, in that linear measurements in these species are either contiguous (MacPhee, 1987; Jenkins, 2003) or broadly overlapping (Garbutt, 1999). M. principula is less frequently collected than is M. longicaudata for unknown reasons and is believed to be patchily distributed across its known range (Goodman & Jenkins, 2000), which encompasses much of the latitudinal extent of the island’s eastern rain forests (Goodman, Jenkins & Pidgeon, 1999). Although these two species occupy broadly sympatric ranges, and have been reported to occur in syntopy, recent evidence suggests that some degree of elevational separation exists, with the larger M. principula occurring in greater numbers at lower elevations relative to M. longicaudata (Goodman & Jenkins, 1998; Goodman et al., 1999).

Table 1. Taxonomic history of long-tailed shrew tenrecs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M. longicaudata Thomas, 1882</td>
<td>M. longicaudata</td>
<td>M. l. principula</td>
<td>M. longicaudata</td>
<td></td>
</tr>
<tr>
<td>M. majori Thomas, 1918</td>
<td>(majori)</td>
<td>(majori)</td>
<td>(majori)</td>
<td></td>
</tr>
<tr>
<td>M. principula Thomas, 1926</td>
<td>(principula)</td>
<td>M. l. sorella</td>
<td>(principula)</td>
<td></td>
</tr>
<tr>
<td>M. sorella Thomas, 1926</td>
<td>(sorella)</td>
<td>M. major</td>
<td>M. principula</td>
<td></td>
</tr>
<tr>
<td>M. decaryi(^1) Grandidier, 1928</td>
<td>M. paramicrogale decaryi</td>
<td>(sorella)</td>
<td>M. principula</td>
<td></td>
</tr>
<tr>
<td>M. prolixacaudata Grandidier, 1937</td>
<td>(prolixacaudata)</td>
<td>M. prolixacaudata(^2)</td>
<td>(decaryi)</td>
<td></td>
</tr>
</tbody>
</table>

Parentheses indicate junior synonymy as proposed by each author; trinomina indicate proposed subspecies.\(^1\)Subsequently Paramicrogale decaryi (Grandidier & Petit, 1931). The type specimen of M. decaryi was found in a cave associated with a bone assemblage. It is unclear if the remains are modern or date from an earlier geological period, presumably Holocene.\(^2\)Incorrectly referred to as ‘amplexicaudata’ throughout Heim de Balsac (1972).\(^3\)The current accepted taxonomy (e.g. Hutterer, 1993; Jenkins, 2003).\(^4\)No formal resurrection was proposed.

1998; Rasoloarison et al., 2000), yet only recently have scientists begun to elucidate patterns of genetic variation (Yoder et al., 2000). Clarifying species richness within shrew tenrecs is of fundamental importance not only from a conservation standpoint, but also for better understanding the evolutionary history of a spectacular diversification within one of the world’s most threatened biotas (Mittermeier & Mittermeier, 1997). Our aim was to determine whether phylogenetic analysis of mtDNA sequence variation supports the two-species hypothesis for long-tailed shrew tenrecs. We identified lineages (sensu de Queiroz, 1998) provisionally as mtDNA haplotype clades and considered these as hypotheses of species boundaries to be tested with additional data.

While we recognize the potential for non-monophyletic gene trees to be embedded within reproductively cohesive species due to incomplete lineage sorting (Pamilo & Nei, 1988) or recurrent gene flow (Slatkin & Maddison, 1989), mtDNA haplotypes are expected to coalesce much more rapidly relative to nuclear markers due to their smaller effective population size (Moore, 1995). They should therefore serve as relatively early indicators of reproductive isolation. We tested whether divergent clades suggested by mtDNA data were supported by both a priori and posthoc morphometric analyses at several levels of comparison. Wiens & Penkrot (2002) recently proposed a similar strategy for using mtDNA and morphology to test species limits, but their method, as outlined, assumes that species are allopatric or parapatric, whereas we were interested in testing for species that are believed to be widely sympatric. We showed that morphometric analyses corroborate species limits suggested by mtDNA variation, supporting the existence of cryptic species of long-tailed shrew tenrecs. Finally, we found consistent but previously unrecognized patterns of elevational segregation among haplotype clades representing broadly sympatric ‘cryptic’ species and demonstrated contrasting patterns of clinal variation, both of which have ecological and conservational implications. We conclude that the addition of a molecular perspective on such patterns has advantages over traditional morphological approaches due to the numerous and interrelated factors confounding taxonomic investigations of shrew tenrecs. Furthermore, we argue that distributional evidence can and should be included in studies of species limits and that a priori assumptions of non-sympathy among morphologically similar species can be misleading.

MATERIAL AND METHODS
A total of 120 museum specimens was included in the molecular component of this project (Appendix 1) from a wide variety of sites spanning the complete length of the eastern humid forest of Madagascar and numerous localities in the central highlands and western dry forest (Fig. 1). One of the authors (L.E.O. or S.M.G.) verified the identification of all adult and most juvenile specimens as either M. principula or M. longicaudata using comparative museum collections or published keys (MacPhee, 1987; Goodman & Jenkins, 1998, 2000; Goodman et al., 1999); juveniles unidentifiable to species level were still easily assignable to the M. principula/M. longicaudata species complex based on relative tail length. We employ the two-species nomenclature throughout this paper but do not assume monophyly at any level.

DNA SEQUENCE GENERATION AND ANALYSIS
We sequenced the entire mitochondrial NADH dehydrogenase subunit 2 gene (ND2 hereafter) from each specimen available for sequencing. Genomic DNA was extracted from frozen or buffered tissue (spleen, muscle or kidney) using the animal tissue protocol in the PureGene kit (Gentra Systems, Inc.). For some individuals, ~4 mm² skin samples were excised from museum specimens and subjected to the same extraction procedure, with proteinase-K digestion extended until little, if any, solid material was visible. Numerous primer combinations were employed depending on the preservation of each individual (see Appendix 2 for a complete list of primers). For most specimens, the entire ND2 gene was amplified using primers Met-1 and Trp-2. PCR amplifications were performed in 20-μL reactions (1–5 μL unquantified template DNA, 1 x amplification buffer and 0.4 U Taq polymerase [Gibco], 0.5 μM each primer, 80 μM each dNTP). Additional MgCl₂ was added in some cases to a final concentration of between 2.0 and 3.0 mM, depending on the template. Thermal cycling parameters included 2 min at 94°C followed by 30 cycles of 20 s at 94°C, 15 s at 56°C, and 60 s at 72°C, with a final 2 min extension at 72°C. Aliquots of the initial reactions were electrophoresed and visualized by UV spectroscopy on 1.5% TBE agarose gels. Bands of the appropriate size were excised and melted in 50–500 μL 0.5x TE buffer. Aliquots (1–3 μL) of these were then used in a second round of PCR employing nested primers of overlapping (= 50 bp minimum overlap) portions of the gene (generally using primers ND2-LOR2 and ND2–3TX). Reamplification conditions were similar to initial amplifications except shorter cycling times were used. Reamplification products were purified using the GeneClean protocol (Bio101) following the manufacturer’s instructions. Unquantified aliquots of purified PCR product (1–5 μL) were cycle-sequenced for both strands using either the ABI PRISM dRhodamine Terminator Cycle Sequencing Ready Mix.
Figure 1. Map of Madagascar, showing collecting localities for specimens included in this study (see Appendix 1 for site descriptions and coordinates). Names marked with an asterisk denote localities from which specimens were collected at multiple locations along an elevational transect and therefore subsume multiple, but closely situated, individual sites. The shaded box represents the type locality of Ankafina for *Microgale longicaudata* and *M. majori* discussed in the text.
Reaction Kit (with AmpliTaq DNA Polymerase, FS; Perkin-Elmer) or BigDyes, version 1 (Perkin-Elmer), according to the manufacturer’s directions, except using 10-μL reaction volumes with reagents scaled down accordingly. Sequencing reactions were purified using ethanol/sodium acetate precipitation. Samples were then electrophoresed on an ABI 377 automated sequencer (Applied Biosciences, Perkin-Elmer). The resulting sequence output was imported and contigs were aligned using Sequencher 3.0 (Gene Codes, Ann Arbor, MI). All sequences in this study have been deposited in GenBank under accession numbers AY193297–AY193416.

Sequences from the entire ND2 gene were aligned by eye with reference to the translated amino acid sequence using MacClade 4.0 (Maddison & Maddison, 2000). Phylogenetic and bootstrap analyses were carried out using PAUP* 4.0 (Swofford, 2002) under the criterion of maximum parsimony (MP) with equally weighted characters. Heuristic tree searches were conducted using stepwise addition (100 random addition sequences) and the tree bisection–reconnection (TBR) branch-swapping algorithm. Branch length estimates were obtained under the maximum likelihood criterion constrained on the strict consensus parsimony tree. A best-fit likelihood model of sequence evolution was estimated based on likelihood-ratio tests of increasingly general models using Modeltest 3.0 (Posada & Crandall, 1998, 2001). Nodal support was estimated by bootstrap resampling under MP with 1000 pseudoreplicates employing TBR branch swapping and ten random-addition replicates. Tree topology was also estimated with a Markov chain Monte Carlo approach as employed in MrBayes (version 2.01; Huelsenbeck & Ronquist, 2002). Four Markov chains (three heated, one cold) were allowed to run for 500 000 generations using random starting trees and the same model employed in branch length estimates, with trees saved every 100 generations. Trees saved prior to the attainment of parameter stationarity in ln likelihood sums (assessed visually using the ‘sump’ command) were discarded. This process was repeated four times, and the saved trees from each of the five analyses were used to calculate posterior probabilities (Larget & Simon, 1999). To determine whether the Markov chain was mixing sufficiently and had run a sufficient number of generations to accurately estimate the joint posterior distribution, we compared the nodal posterior probabilities obtained in each of the five runs to determine the associated variance (M. Alfaro, pers. comm.). Multiple specimens of M. pusilla, supported as the closest outgroup to long-tail shrew tenrecs by morphological and molecular data (Olson, 1999; Olson & Goodman, 2003), were used to root all trees.

MORPHOMETRY

Twenty-one craniodental and six postcranial skeletal measurements were taken using digital calipers accurate to 0.1 mm by one of the authors (L.E.O.). An additional three external measurements were taken from collectors’ field notes or specimen tags. A list of these measurements and their definitions is provided in Appendix 3 and the raw data are provided online in Table S1 (see Supplementary Material section). Some measurements were recorded for comparison with published studies but were not included in morphometric analyses for reasons given in their definitions. Only adults, defined by the presence of fully erupted permanent dentition (e.g. Jenkins et al., 1996), were included. While we are aware of the potential for morphological variation to be influenced by habitat-related factors (e.g. Patton & Brylski, 1987), this has yet to be demonstrated in shrew tenrecs and we therefore assumed that such variation is primarily due to genetic factors, pending any evidence to the contrary.

We calculated descriptive statistics and conducted univariate and bivariate analyses using StatView version 4.5. We used JMP version 3.1.6 to perform principal components analysis (PCA) and multiple-group discriminant function analysis (DFA) on log-transformed (base 10) measurement data. PCA was conducted on the covariance matrix to identify patterns of variation without a priori allocation of individuals to a haplotype clade. DFA was used to test whether morphology could correctly predict haplotype clade membership. We performed Student’s t-tests on all measurements to test for sexual dimorphism. Because the number of measurements possible for a given individual was dependent on specimen preparation and condition, DFA was conducted separately for skull (20 measurements); skull + external (22 measurements); and skull + external + skeletal (28 measurements) characters. Only adults were included in the t-tests and morphometric analyses. Abbreviations presented in parentheses after each measurement in Appendix 3 are used in subsequent text and tables.

Potential patterns of morphological variation associated with patterns of clinal and elevational distribution were assessed using correlation Z-tests (alpha level of P < 0.05 corrected for multiple comparisons) at multiple hierarchical levels.

RESULTS AND DISCUSSION

PHYLOGENY AND GENETIC VARIATION

The use of mtDNA sequence data to test and revise taxonomic boundaries has become a widespread practice in evolutionary biology (Avise, 2000; Puorto et al., 2001; Wiens & Penkrot, 2002 and references cited therein). Results derived from a single molecular
marker (or multiple linked markers) must be interpreted with caution, however, due to the potential for gene tree–species tree incongruence (Goodman et al., 1979; Avise et al., 1983; Pamilo & Nei, 1988; Maddison, 1997; Hudson & Coyne, 2002). In the absence of information from multiple unlinked markers, falsifiability of single-locus hypotheses can be sought using morphological, ecological and distributional evidence. We took such a synthetic approach towards testing species boundaries and clarifying the patterns of diversification in a group suspected of harbouring ‘cryptic’ species-level entities.

All Microgale ND2 sequences generated for this study were identical in length (1044 bp) to that of the lesser Madagascar hedgehog tenrec Echinops telfairi (Mouchaty et al., 2000). Visual inspection of translated amino acid sequences failed to reveal a need to invoke any insertion/deletion events and the alignment was therefore considered to be unambiguous. Unlike Echinops, all Microgale ND2 sequences possessed a methionine start codon rather than an isoleucine. Of the 120 sequences generated, 91 represented unique haplotypes (80 in specimens referred to M. longicaudata, seven in M. principula, and four in M. pusilla). An alignment file in Nexus format is provided online in Table S2 (see Supplementary material section).

The heuristic search recovered 848 equally parsimonious trees (944 steps, consistency index = 0.55, retention index = 0.95), the strict consensus of which is shown in Figure 2.

Long-tailed shrew tenrecs were found to be a well-supported monophyletic assemblage relative to the outgroup M. pusilla, a finding corroborated by previous morphological and molecular studies limited to interspecific relationships (Olson, 1999; Olson & Goodman, 2003). Likelihood-ratio tests of successively general models of sequence evolution (as implemented by Modeltest) resulted in a model incorporating unequal transition rates (A–G = 22.0144; C–T = 11.5143), estimated base frequencies (A = 0.3680, C = 0.3013, G = 0.0746, T = 0.2561), and among-site rate variation approximated by the gamma distribution (shape parameter = 1.85), with the proportion of invariant sites estimated to be 0.5015. Posterior probabilities for the clades shown in Figure 2 were associated with SD < 1% among the five separate runs, suggesting that the Markov chain was adequately approximating the joint posterior distribution.

Both the MP and Bayesian analyses identified five divergent haplotype lineages within long-tailed shrew tenrecs, each with optimal statistical support as measured by both parsimony bootstrap and Bayesian posterior probability (Fig. 2). Specimens identified as M. principula comprised a monophyletic sister group to the remaining long-tailed specimens, most of which had been identified as M. longicaudata, but some of which conformed to published definitions of M. principula by virtue of their relatively large size (some juvenile specimens were not confidently identified as either M. principula or M. longicaudata). Within putative M. longicaudata, four clades were identified that, based on general elevational and/or latitudinal distribution patterns (Table 2), are referred to hereafter as North (restricted to northern latitudes), Highland (restricted to elevations 1300 m and above), Widespread (broadly distributed), and Mid (recovered at middle latitudes) clades. Monophyly of the M. longicaudata clade with respect to M. principula, however, was only weakly supported by parsimony bootstrapping (45%) and had a posterior probability of slightly less than 0.95.

These five clades were separated by long internal branches with comparatively short terminal branches within each clade. Uncorrected pairwise sequence divergence estimates between the morphologically distinctive M. pusilla and long-tailed shrew tenrecs ranged from 14.3% to 18.5%. This was comparable to the range observed in comparisons of M. principula to the four named M. longicaudata haplotype clades (14.5–16.9%) as well as that between each of the two basal M. longicaudata clades (North + Highland and Widespread + Mid; 14.6–16.6%). Divergences between each of the two terminal sister clades in M. longicaudata were slightly lower, ranging from 11.3% to 13.2% in comparisons of North and Highland haplotypes and 10.6–12.9% between Widespread and Mid specimens. All of these pairwise distance measures fall within the range of values for similar comparisons between sister species of oryzorictines (shrew and mole tenrecs) for ND2 (10.6–16.6%; Olson, 1999). Maximum uncorrected divergences within each of the recognized terminal clades were highest in M. principula (6.6%), followed by Widespread (5.2%), Highland (3.7%), North (3.4%) and West (0.2%).

Based on the striking difference between the long internal and short terminal branches within the M. longicaudata clade, the questionable monophyly of M. longicaudata with respect to M. principula, and the levels of divergence observed between major haplotype clades within M. longicaudata, we considered each of the four M. longicaudata haplotype clades (North, Widespread, Mid and Highland) as potential species in subsequent investigations of morphological boundaries.

Morphometric variation

Of the M. longicaudata and M. principula specimens sequenced, 49 were judged to be dental adults (Fig. 3), 57 were subadults, and nine could not be confidently
Table 2. Sympatric occurrences of haplotype clade members

<table>
<thead>
<tr>
<th>Skull size</th>
<th>Haplotype clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Elevation (m)</td>
</tr>
<tr>
<td></td>
<td>Skull size</td>
</tr>
<tr>
<td></td>
<td>principula</td>
</tr>
<tr>
<td></td>
<td>North</td>
</tr>
<tr>
<td></td>
<td>Highland</td>
</tr>
<tr>
<td></td>
<td>Widespread</td>
</tr>
<tr>
<td></td>
<td>Mid</td>
</tr>
<tr>
<td>Andohahela</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>725</td>
</tr>
<tr>
<td></td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>1875</td>
</tr>
<tr>
<td>Anjanaharibe-Sud</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Marojejy</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>1625</td>
</tr>
<tr>
<td></td>
<td>1875</td>
</tr>
<tr>
<td>Ambatovy</td>
<td>1164</td>
</tr>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Ambohitantely</td>
<td>1450</td>
</tr>
<tr>
<td></td>
<td>1500</td>
</tr>
<tr>
<td>Ankaratra</td>
<td>2000</td>
</tr>
<tr>
<td>Ankazomivady</td>
<td>1675</td>
</tr>
<tr>
<td>Manambolo</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Manongarivo</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td>1600</td>
</tr>
</tbody>
</table>

Numbers of adult and juvenile specimens, respectively, are shown for each clade at each locality where more than one clade occurs. A boxplot of relative skull size (condylopremaxillary length, adults only) is given above (scale ranges from 17 to 25 mm). Elevational and latitudinal (all south latitude) ranges for each clade over its entire distribution are also provided.

aged (either skulls were left intact in fluid specimens or the presence of a full set of adult dentition was equivocal). Among adults, skull length as measured between the occipital condyles and the anterior premaxillaries (condylopremaxillary length) ranged from 17.5 mm to 24.4 mm. With respect to haplotype clade and skull size, three general size classes were evident, comprising small-sized (Widespread and Mid), medium-sized (Highland and North), and large-sized (M. principula) adults (Table 2), although some overlap was observed among clades. We noted that some individuals with M. longicaudata haplotypes (as identified here) fell in the general size range of M. principula as delimited by previous authors (Fig. 3).

Bivariate plots of the first two axes of the PCA for skull and skin measurements showed no overlap among any clusters (as identified by haplotype) with the exception of Widespread and Mid (Fig. 4A). Thus, the overlap in size seen between M. longicaudata and M. principula for select individual measurements (Fig. 3) disappeared when multiple measurements were subjected to ordination.

Sample sizes were insufficient to test for sexual dimorphism within all but the Widespread clade (number of males/total number of individuals = 5/6 for M. principula, 5/6 for Highland, 4/4 for North and 3/3 Mid). Within that clade, no significant difference was found for any measurement between the 20 males and 12 females in the adults sampled. With the acknowledgement that increased sampling may reveal sexual dimorphism in the remaining clades, we proceeded with the DFA on all adult specimens of both sexes.

Based on the results of the molecular phylogenetic analysis and the PCA, we chose to perform DFA at two hierarchical levels, one employing the M. principula and each of the basal two M. longicaudata clades as grouping classes, and a second considering M. principula and each of the four haplotype clades within M. longicaudata. For each level we conducted separate analyses on the skull, skull + external, and skull + external + skeletal measurements, which permitted sample sizes of 49, 48, and 37 adult individuals, respectively. Results are summarized in Table 3 and Figure 4B and C.

M. principula and the two basal M. longicaudata clades were readily discriminated by all three sets of measurements as illustrated in the plot of canonical axes 1 and 2 (Fig. 4B). When all four M. longicaudata haplotype subclades were defined as separate grouping variables, two specimens bearing Widespread haplotypes were misclassified as Mid based on skull measurements (mirroring the PCA results). Of these two individuals, one was correctly classified when external characters were included and both were correctly classified when skeletal measurements were included.

Morphometric variation thus corroborates molecular phylogenetic evidence of multiple cryptic species within M. longicaudata. Skull morphology alone distinguished each of the two broadly sympatric basal haplotype clades within M. longicaudata (Table 3), supporting recent speculation that at least two species exist within M. longicaudata (Goodman & Jenkins, 1998). Despite overlap among clades in several individual measurements, DFA nonetheless discriminated each of the four subclades within M. longicaudata when postcranial skeletal characters were included. Although sample sizes for adults were small for some clades, we consider the possibility that four evolutionarily independent lineages exist within...
IDENTIFYING CRYPTIC SPECIES IN SHREW TENRECS

M. longicaudata and here consider additional lines of evidence.

DISTRIBUTIONAL PATTERNS AS EVIDENCE OF DISTINCT SPECIES

Inspection of the geographical distributions of each of the five major haplotype lineages (North, Highland, Widespread, Mid and M. principula) revealed varying degrees of sympathy and geographical range size among clades (Fig. 2 and Table 2). The Highland, Widespread, and M. principula haplotypes were all widely distributed latitudinally, occurring from Andohahela in the south to Manongarivo (Widespread clade), Marojejy (Highland clade) and Anjanaharibe-Sud (M. principula) in the north. In addition, specimens from the Widespread clade were recovered from Analavelona, the western-most locality in this study. The remaining two clades occupied much smaller ranges confined to either the five northernmost localities (North clade) or two mid-latitude localities (Mid clade).

Sympatric occurrence of at least two haplotype lineages was observed at nine of the sites shown in Figure 1, with as many as three occurring at Andohahela and Anjanaharibe-Sud (Table 2). Consideration of elevational occurrences at localities where elevational transects were conducted showed some combinations of broadly sympatric clades to be parapatric rather than syntopic. For example, the ranges of the North and Highland clades would appear to overlap at Anjanaharibe-Sud and Marojejy, yet in neither locality were individuals from the two clades recovered from the same elevation. For both localities, specimens bearing North haplotypes occurred at lower elevations relative to Highland haplotype individuals. Similarly, M. principula was broadly sympatric with Highland at Andohahela and both Highland and North at Anjanaharibe-Sud, yet in all cases, M. principula only occurred at lower elevations where neither Highland nor North were collected. Of the remaining possible pairwise combinations of sympathy, only Widespread and Mid clades were never observed at the same locality.

As shown in Table 2, the broad sympathy observed among some haplotype clades could be subdivided at finer scales when elevation was taken into account.
Specifically, certain combinations were never found at the same altitude. These included: *Microgale principula* with North or Highland; North with Highland; Mid with Widespread. Furthermore, elevational segregation with respect to these combinations was consistent, with North always occurring at lower elevations compared with Highland (at Marojejy and Anjanaheribibe-Sud) and *Microgale principula* likewise occurring at lower elevations compared with Highland (at Andohahela and Anjanaheribibe-Sud). While replacement of *Microgale principula* by *Microgale longicaudata* with increasing elevation has been reported previously for Anjanaheribibe-Sud (Goodman & Jenkins, 1998), these two species were found to broadly overlap at elevations ranging from 440 m to 1200 m at Andohahela by Goodman et al. (1999). However, as our results have shown (Fig. 3 and below), several individuals previously identified as *Microgale principula* may represent large-bodied *Microgale longicaudata* specimens instead. This appears to be the case with the *Microgale principula* specimens reported from elevations above 810 m in Goodman et al. (1999) (L. Olson, unpubl. data). While sample sizes from these localities were small, our results nonetheless suggest elevational replacement of *Microgale principula* by large-bodied *Microgale longicaudata* clades (North and Highland) where the two occur in parapatry (Table 2). Furthermore, their respective elevational distributions correspond to habitat differences observed at these localities (Rakotondrainibe & Raharimalala, 1998; Helme & Rakotomalaza, 1999), with *Microgale principula* occupying lowland forest and large-bodied *Microgale longicaudata* restricted to montane forest habitats above 1200 m. Whether habitat differences underlie the observed elevational segregation of the North and Highland haplotype clades is less clear, as is the potential role of competitive exclusion among the three large-bodied morphs (*Microgale principula*, North and Highland).

In contrast to the lack of syntopy observed between *Microgale principula*, North and Highland clades, members of the small-bodied clade (Widespread + Mid) were found together with one of the three larger morphs at nine localities throughout much of their range (Table 2). Evidence from two of these sites further demonstrates their ability to disperse and coexist in direct sympatry. Our specimens from Ambohitantely came from five isolated forest fragments, ranging in size from 1250 to 0.64 ha, surveyed by Goodman & Rakotondravony (2000), who reported a nested distribution of small mammal species with respect to fragment area. Only two species were captured in all fragments, one of which was *Microgale longicaudata*. Based on their findings and on previously published accounts of *Microgale longicaudata* occurring outside of forested zones, it was concluded that this species is an adept disperser relative to most small mammals in Madagascar (Goodman & Rakotondravony, 2000). Our original molecular sample of specimens from these forest fragments included 11 specimens, two that have now been identified as belonging to the Widespread clade, and the remainder identified as belonging to the Highland clade.

<table>
<thead>
<tr>
<th>Haplotype clade membership</th>
<th>Proportion adult specimens in each haplotype clade correctly assigned to that clade by DFA</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skull</td>
<td>Skull & skin</td>
</tr>
<tr>
<td>North</td>
<td>4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>Highland</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>Widespread</td>
<td>30/31</td>
<td>30/30</td>
</tr>
<tr>
<td>Mid</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>Microgale principula</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>(North + Highland)</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>(Widespread + Mid)</td>
<td>34/34</td>
<td>33/33</td>
</tr>
<tr>
<td>M. principula</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Sample size</td>
<td>49</td>
<td>48</td>
</tr>
</tbody>
</table>

Bold type depicts the analyses corresponding to Fig 4B, C. Separate analyses were conducted on each of three sets of measurements (see text). 1Misclassified specimen predicted as Mid. 2Sample includes specimen misclassified as Mid based on skull measurements only.
(Fig. 2). Subsequent sequencing of additional specimens from the Ambohitantely forest patches confirmed that both clades are present in even the smallest fragment (0.64 ha) (L. Olson, S. Goodman & A. Yoder, unpubl. data). The second noteworthy locality, Ankaratra, was represented by four specimens from the Highland and Mid clades. These were collected from a planted, effectively monospecific, forest of a native tree, largely isolated from bigger blocks of natural forest and surrounded by anthropogenically degraded habitats (Goodman et al., 1996a). As with Ambohitantely, this suggests that the small-bodied *M. longicaudata* clades (Widespread and Mid) are not in direct competition with their larger counterparts and that both general size morphs of *M. longicaudata* are resilient under the effects of habitat degradation and isolation.

HOW MANY SPECIES OF LONG-TAILED SHREW TENREC?

Our results support the taxonomic status of *M. principula* as distinct from *M. longicaudata* just as they strongly suggest the existence of multiple cryptic species within *M. longicaudata*. We agree with de Queiroz’s (1998) notion of species as lineages united by gene flow (for sexually reproducing organisms). Our operational definition of lineages as reciprocally monophyletic mtDNA haplotype clades suggests five such groups corresponding to four divergent (and monophyletic) clades within *M. longicaudata*, along with a monophyletic *M. principula*. Under the genealogical species concept (Baum & Shaw, 1995; Shaw, 1998), each of these five clades would potentially warrant recognition as a distinct species since each is both ‘basal’ (i.e. there is no evidence of further subdivision within a clade) and ‘exclusive’ (monophyletic in the case of a single marker phylogeny). Because of the tendency for mtDNA to attain reciprocal monophyly far more rapidly than do nuclear genes, Hudson & Coyne (2002: 1563) recently cautioned against recognizing genealogical species based on mtDNA data alone ‘unless population divergence is very ancient.’ As we have noted, branch lengths and sequence divergence separating each of the clades are on a par with those observed in other closely related shrew tenrecs (Olson, 1999). This suggests that sufficient time has elapsed for assessing reciprocal monophyly in the context of genealogical species recognition.

Rather than rely exclusively on molecular data, however, we believe it essential to incorporate non-molecular data into our investigation of species boundaries. Both PCA and DFA corroborate the molecular results, suggesting multiple distinct morphological clusters within *M. longicaudata* (Fig. 4, Table 3). The latter analyses correctly classify all adult specimens by haplotype group when external and skeletal measurements are included (Fig. 4C, Table 3). We interpret these results as evidence of morphological (and, by extension, nuclear DNA) divergence corresponding to the mtDNA phylogeny, which serves as further evidence of evolutionary isolation among haplotype lineages. We restricted our morphological investigation to quantitative variation, however, and did not survey qualitative characters; as such, our results are not amenable to interpretation under the phylogenetic species concept (e.g. Nixon & Wheeler, 1990).

The geographic distributions of each haplotype clade lend further support to the hypothesis that multiple cryptic species are present. Extensive sympathy observed between the Highland and Widespread clades suggests ample opportunities for interbreeding, yet these remain morphologically distinct throughout their range, suggesting complete reproductive isolation. The same is true of Widespread and *M. principula* clades. Because they are not observed in direct sympathy, the same argument does not apply to the Widespread and Mid haplotype clades. Moreover, individuals from these two clades overlap in morphospace (Fig. 4A) and are not consistently differentiated by DFA (Table 3). In the case of the North and Highland clades, however, there is evidence of elevational and habitat segregation (Table 2 and above discussion). Furthermore, though these clades were not observed in direct sympathy (syntopy), they were collected less than 4 km from each other at Anjanaharibe-Sud and less than 0.5 km apart at Marojejy (along elevational transects). While proponents of the biological species concept (Mayr, 1963) would therefore presumably recognize at least the *M. principula*, (Widespread + Mid), and (Highland + North) clades as separate species, we believe the evidence from molecular divergence, morphological distinctiveness, elevational segregation and local parapary justifies recognition of the North and Highland clades as separate species as well.

Our interpretation and application of de Queiroz’s (1998) unified species concept thus conservatively recognizes four distinct species of long-tailed shrew tenrec corresponding to the North, Highland, (Mid + Widespread) and *M. principula* haplotype clades (lineages), with molecular, morphological, and distributional evidence either supporting or failing to refute their reproductive isolation.

REVISED TAXONOMY OF LONG-TAILED SHREW TENRECS

Confident assignment of nomenclatural epithets to these various taxa in accordance with the rules of taxonomic seniority requires a re-evaluation of the type material for the named forms listed in Table 1. Junior synonymy of *M. sorella* Thomas 1926 and *M. decaryi* Grandidier 1928 with respect to *M. principula*
Thomas 1918 has been advocated by MacPhee (1987) and adopted by subsequent authors (e.g. Hutterer, 1993).

Comparison of published measurements of the former (Thomas, 1926) with our results (see below) support *M. sorella* as a junior synonym of *M. principula*, but the status of *M. decaryi* is less certain in light of our revised morphological boundaries for *M. principula* and the fragmentary nature of the type material of *M. decaryi* (see MacPhee, 1987). We advocate continued recognition of *M. principula* as a distinct species but note that external measurements alone do not reliably differentiate it from large-bodied *M. longicaudata* (see below and Fig. 3).

With respect to epithets currently synonymized with *M. longicaudata* (Table 1) data collected from the holotypes of *M. longicaudata* (BM[NH] 82.3.1.15) and *M. majori* (BM[NH] 82.3.1.17), together with external measurements published in their respective descriptions (Thomas, 1882, 1918) and the type locality as subsequently determined (MacPhee, 1987; Carleton & Schmidt, 1990), provide some insight into the reconciliation of our results with these original descriptions. The type specimens of both *M. longicaudata* and *M. majori* were collected from the same locality, Ankarafina, indicated in Figure 1. This locality falls within the bounded ranges of both Highland and Widespread haplotype clades (Fig. 2). Thomas’s (1918) differentiation of *M. majori* from *M. longicaudata* relied primarily on the former’s smaller body size. Both type specimens are adults, and limited craniodental measurements available for these individuals suggest that the holotype of *M. longicaudata* corresponds to the large-bodied (Highland) clade and that of *M. majori* belongs to the small-bodied (Widespread) clade (Fig. 5).

The type locality of *M. prolixacaudata* Grandidier 1937 has not been firmly established but is believed to be in the vicinity of Antsiranana (MacPhee, 1987), approximately 40 km north north-east of Mt. d’Ambre and farther north than any of the samples included in this study. Given the distribution observed for North haplotype specimens, and the absence of any other haplotypes north of Manongarivo (Figs 1, 2), it seems likely that this clade includes the type specimen of *M. prolixacaudata*. This specimen (MCZ 45035) is a subadult undergoing tooth replacement and is thus not amenable to morphometric comparisons with the adult sample from our study (the paratype, MCZ 46020, is an intact alcohol-preserved specimen of indeterminate age). We believe it to be premature to formally assign *M. prolixacaudata* to the North clade until samples from the type specimens can be included in a molecular analysis.

We do, however, believe our results justify the formal resurrection of *M. majori* Thomas 1918, which includes the Widespread and Mid haplotype clades, from synonymy with *M. longicaudata* (Highland clade) for reasons explained above. Recognition of *M. majori* as a distinct species makes it the most widely distributed shrew tenrec known (Fig. 2). We propose the provisional key below for discriminating among adults of the three species of long-tailed shrew tenrecs formally recognized here and will await a more thorough investigation of the *M. prolixacaudata* type material to distinguish it from the Highland haplotype clade.

![Bivariate plot of condyloincisive length against upper toothrow length for the adult specimens in the Highland and Widespread haplotype clades. Values for the holotypes of *Microgale longicaudata* and *M. majori* are indicated.](image)

Figure 5. Bivariate plot of condyloincisive length against upper toothrow length for the adult specimens in the Highland and Widespread haplotype clades. Values for the holotypes of *Microgale longicaudata* and *M. majori* are indicated.

PROVISIONAL KEY FOR SPECIES OF LONG-TAILED SHREW TENRECS

1. Mandible height >6.2 mm; condylopremaxillary length >22 mm; greatest skull length >23 mm; total length >225 mm...*M. principula*
 Mandible height <6.0 mm; condylopremaxillary length <22.5 mm; greatest skull length <23 mm... 2

2. M3 width generally >6.0 mm; total length >190 mm; if M3 < 6.0 mm
due to excessive wear, total length generally >210 mm; tail length >125 mm ... *M. longicaudata* (including North haplotype clade)
 M3 width <6.0 mm; total length <200 mm; tail length <135 mm... *M. majori*
A REVISED PERSPECTIVE ON GEOGRAPHIC VARIATION: IMPLICATIONS FOR MORPHOLOGICAL SPECIES BOUNDARIES IN SHREW TENRECS

The observation of cryptic species within *M. longicaudata* permits a novel perspective on patterns of geographic variation in long-tail shrew tenrecs. Given the broad elevational and latitudinal distributions of the three widely distributed clades (*M. principula*, Highland and Widespread) (Table 2), we investigated whether either of these factors was significantly associated with variation in body size, using condylopremaxillary length as proxy for overall size. In addition, we explored whether inferences of geographic variation based on the assumption of a single species of *M. longicaudata* differed from those incorporating the hypothesis of multiple cryptic species. In no case was elevation significantly associated with body size. However, both *M. principula* and *M. longicaudata* (all haplotype clades combined) showed a negative correlation between body size and distance from the equator (Fig. 6), though this result was not significant for *M. principula* when corrected for multiple comparisons. When the two wide-ranging *M. longicaudata* clades were considered individually, contrasting patterns were observed, with a significant negative correlation between size and increasing latitude found in Highland and a significant positive relationship in Widespread. Although the latter finding is consistent with expectations based on Bergmann’s Rule (Bergmann, 1847; reviewed in Ashton, Tracy & de Queiroz, 2000), detailed climatic data for these localities are generally lacking.

Furthermore, there appears to be a historical component to this pattern. In each of the three wide-ranging clades (Highland, Widespread and *M. principula*), the basal-most split separated northern and southern populations (with sympatry among these fundamental groups observed in the Widespread clade at Mahatsinjo). Within the Highland clade, there was a primary bifurcation between the single Andohahela specimen (a juvenile) and a clade subsequently branching into a second, nested north–south dichotomy. Student’s *t*-tests (correcting for multiple comparisons, i.e. *P* < 0.05/3) conducted on each of these three north–south population samples likewise showed significantly larger-bodied individuals at lower latitudes in *M. principula* (*P* = 0.0092) and Highland (*P* < 0.0001) and the opposite relationship in Widespread (*P* = 0.003). Disentangling the relative influences of historical and environmental factors on body size variation will require additional sampling and analysis. However, it is clear that geographic variation should be more seriously considered in future studies of shrew tenrecs, particularly in groups suspected to contain cryptic species. For example, previous authors

Figure 6. Correlation between condylopremaxillary length and latitude. Least squares regression lines are shown. A, *Microgale principula* and all specimens currently referred to *M. longicaudata*, both of which show a negative correlation between size and distance from the equator (*r* = −0.96 and −0.55; *P* = 0.006 and <0.0001; and R² = 0.924 and 0.325, respectively; the former is not significant when corrected for multiple comparisons). B, Highland haplotype clade individuals only (*r* = −0.912, *P* < 0.0001, R² = 0.831). C, Widespread haplotype clade members, which show a contrasting positive correlation with distance from the equator (*r* = 0.580, *P* = 0.0002, R² = 0.336).
have noted that subadults of other species of Microgale frequently exceed average adults in external and cranial measurements (MacPhee, 1987; Jenkins et al., 1996), an as-yet unexplained phenomenon that MacPhee (1987: p3) attributed to an ‘almost reptilian propensity’ for individual size variation. In fact, this phenomenon may be best explained by an alternative hypothesis of sympatric cryptic species. As we have shown, the possibility of cryptic shrew tenrec species occurring in sympatry is a reality, with juveniles of M. longicaudata sensu stricto collected from the same localities as were adult M. majori (Fig. 2). The potential for confusion can be exacerbated when contrasting patterns of clinal variation coincide with sympatric occurrences of cryptic species. Finally, the widespread sympatry and syntopy observed among different haplotype clades and size morphs, together with the contrasting patterns of clinal variation in body size, suggest that the morphological variation between these size morphs is primarily genetic rather than habitat-related.

We believe this study demonstrates the utility of molecular data to test and refine taxonomic boundaries among morphologically similar and closely related taxa, particularly when such taxa are broadly sympatric. Despite the numerous vagaries confounding attempts to identify morphological boundaries among long-tailed shrew tenrec species, including a preponderance of juvenile specimens, contrasting patterns of geographic variation, and widespread sympatry at broad spatial scales, our results suggest a relatively straightforward picture of habitat segregation and possible ecological separation among similarly sized taxa. While we readily acknowledge the inferential limitations due to small sample sizes for some clades, the strategy employed here has provided new insight into the patterns of diversity in Malagasy tenrecs. The revised taxonomic framework developed here, which has doubled the number of species of long-tailed shrew tenrecs, suggests the need for similar studies on the remaining species of tenrec, such that a more accurate picture of species diversity, historical diversification, geographic variation, and ecological interactions can emerge. Finally, this study highlights the urgent need for continued collecting of voucher specimens for the rigorous documentation of biodiversity. Seemingly well-intentioned attempts to circumvent the collection of complete specimens, such as photographing and releasing individuals (Smith et al., 1991), severely compromise the ability to pursue this fundamental goal of biological inquiry (Peterson & Lanyon, 1992; Goodman & Lanyon, 1994). Certainly, many of the conclusions reached in this study would not have been possible with genetic data only and would have left us with tantalizing but untestable hypotheses.

ACKNOWLEDGEMENTS

This work would not have been possible without the collaboration of several institutions on Madagascar: Direction des Eaux et Forêts, Association National pour la Gestion des Aires Protégées, and Département de Biologie Animale at the Université d’Antananarivo. The vast majority of the fieldwork associated with this paper was conducted in the context of the Ecology Training Program of WWF – Madagascar. Financial support for faunal studies was received from The National Geographic Society, Volkswagen Foundation, The John D. and Catherine T. MacArthur Foundation, and WWF – US.

For the generous loan of tissues we thank S. Jansa and P. Myers (UMMZ), G.K. Creighton and M. Carleton (USNM), and D. Rakotondravony (UADBA). J. D. Phelps and W.T. Stanley (FMNH) provided invaluable assistance with tissues housed at the Field Museum. B. Rasolonandrasana and V. Soarimala made additional tissues available.

Support for L.E.O. and sequencing costs were paid for by National Science Foundation grant DEB-9985205 to A.D.Y. Additional DNA sequencing was performed in the Field Museum’s Pritzker Laboratory for Molecular Systematics and Evolution, operated with support from the Pritzker Foundation, and was funded by an NSF Doctoral Dissertation Improvement Grant (IBN 9623454) to Bruce D. Patterson (PI) and L.E.O. Digital calipers and the associated hardware were purchased with a Sigma Xi Grant-in-Aid of Research awarded to L.E.O. Travel to museums was made possible by an Albert R. and Alma Shadle Fellowship awarded to L.E.O. by the American Society of Mammalogists and administered by the Buffalo Foundation.

J. Walker, R. Anderson and M. Ravosa provided valuable advice on performing discriminant function analysis and M. Alfaro assisted with the Bayesian analysis. Finally, we are grateful to Shannon Hackett and two anonymous reviewers for their thorough and constructive comments on an earlier version of this manuscript.

SUPPLEMENTARY MATERIAL

The following material is available from: http://www.blackwellpublishing.com/products/journals/suppmat/BIJ/BIJ366/BIJ366sm.htm

Table S1. Raw measurement data.
Table S2. ND2 alignment.

REFERENCES

APPENDIX 1

SPECIMENS EXAMINED AND COLLECTING LOCALITIES

In most cases, locality data were taken directly from collectors' field catalogues. Names in capital letters refer to the localities as identified in Figure 1, which in some cases include multiple sampling sites too closely situated to differentiate at the scale illustrated. FMNH, Division of Mammals, Field Museum of Natural History; SMG, Uncatalogued specimens collected by S. M. Goodman housed at UADBA; UADBA, Département de Biologie Animale, Université d’Antananarivo; USNM, Division of Mammals, United States National Museum.

MONTAGNE d’AMBRE

Antsiranana Province, Montagne d’Ambre National Park

5.5 km SW Joffreville (Ambohitra) 12°31'00"S, 49°10'00"E, 1000 m: M. longicaudata FMNH 156316, 156321; near Station des Rousettes, 5.5 km SW Joffreville, 12°31'38"S, 49°10'18"E, 1000 m: M. longicaudata FMNH 154560; Grande Lac, 12 km SW Joffreville (Ambohitra) 12°35'08"S, 49°09'6"E, 1325 m: M. longicaudata FMNH 156317, 156320.

MANONGARIVO

Antsiranana Province, Manongarivo Special Reserve

12.8 km (228°) SW Antanambao, 13°58'6"S, 48°25'4"E, 785 m: M. majori FMNH 166232; 14.5 km (220°) SW Antanambao, 14°00'1"S, 48°25'7"E, 1240 m: M. longicaudata FMNH 166233, UADBA 11585, M. majori UADBA 11584; 17.3 km (218°) SW Antanambao, 14°01'3"S, 48°25'1"E, 1600 m: M. longicaudata FMNH 166202, M. majori FMNH 166203.

MARAJOJY

Antsiranana Province, Marojejy National Park

Along tributary of Manantenina River, 11 km NW Manantenina, Antranohofa, 14°26.2'5", 49°44.5'5", 1225 m: M. longicaudata FMNH 159667; 10.5 km NW Manantenina, along tributary at head of Andranomifotofota River, 14°26.4'5", 49°44.5'0", 1625 m: M. longicaudata FMNH 159668, 159669, 159671.

BETAOLANA

Antsiranana Province, Betaolana Forest, 11.0 km NW Ambodiangezoka, 14°36.6'5", 49°25.5'0", 1200 m: M. longicaudata FMNH 167489, SMG 11083.

ANJANAHARIBE-SUD

Antsiranana Province, Anjanaharibe-Sud Special Reserve

9.2 km WSW Befingitra, 14°44.7'0", 49°27.7'0", 1260 m: M. longicaudata FMNH 154005; 6.5 km SSW Befingitra, 14°45.3'0", 49°30.3'0", 875 m: M. principula UADBA 10540.

Mahajanga Province, western slope of Anjanaharibe-Sud, 13.0 km SW Befingitra, 14°45.9'0", 49°25.9'0", 1600 m: M. longicaudata FMNH 167435.

AMBOHITANELY

Antananarivo Province, Ambohitanely Special Reserve

28 km NNE Ankazobe, 18°06.4'0", 47°15.1'0", 1500 m: M. longicaudata FMNH 165483, 165486; 24 km NE Ankazobe, 18°10.1'0", 47°16.6'0", 1450 m: M. longicaudata FMNH 165474, 165478, 165546, UADBA 10413, 10415, 10417, 10418, M. majori FMNH 165481, 165457, M. pusilla FMNH 165489.

AMBOHIJANAHARY

Mahajanga Province, Ambohijanahary Special Reserve

Ankazotsihafotofota Forest, 18°15.7'0", 45°25.2'0", 1150 m: M. majori FMNH 167537, 167538, 167539, 167540, 167541, 167542.
ANJOZOROBE
Antananarivo Province, 2 km NNE Andranomay, 13 km SE Anjozorobe, 1300 m, 18°28.8’S, 47°57.3’E: *M. longicaudata* FMNH 159450, 159451, 159452, 159455.

ANALAMAY, AMBATOVY & TOROTOROFOTSY
Toamasina Province, Analamay, 18°49.7’S, 48°19.9’E, 969 m: *M. longicaudata* UADBA 10568, *M. majori* UADBA 10569; Ambatovy, 18°51.1’S, 48°18.5’E, 1164 m: *M. majori* UADBA 11359, *M. principula* UADBA 11355, 11356; Torotorofotsy, 18°51.3’S, 48°21.3’E, 980 m: *M. majori* UADBA 11354.

ANKARATRA
Antananarivo Province, Ankaratra Massif, Nosiarivo Forest, 2 km NNW (by air) Manjakatomo Station, 19°20.7’S, 47°18.2’E, 2000 m: *M. longicaudata* FMNH 156204, 156205, 156206, UADBA 11624.

MAHATSINJO & ANKILAHILA
Antananarivo Province, 10 km SE Tsinjoarivo, Mahatsinjo Forest, Andasivodihaizo, 19°40.8’S, 47°46.2’E, 1550 m: *M. majori* UADBA 166119, UADBA 11847, *M. pusilla* FMNH 166123, 166124; 16.2 km SE Tsinjoarivo, Ankilahila Forest, along Andrindrimbolo River, 19°42.4’S, 47°50.1’E, 1400 m: *M. majori* FMNH 166149, 166171, 166172, UADBA 10704.

ITREMO
Fianarantsoa Province, Ianasana Forest, 7 km W Itremo, 20°36.1’S, 46°34.3’E, 1630 m: *M. pusilla* FMNH 166040.

ANKAZOMIVADY
Fianarantsoa Province, 28 km SSW Ambositra, 5 km SW Ambalamanakana, Ankazomivady Forest, 20°46.5’S, 47°10.1’E, 1675 m: *M. longicaudata* FMNH 161740, *M. majori* FMNH 161730, 161731, 161732, 161734, 161735, 161736, 161737, 161738, 161739, 161782.

RANOMAFANA
Fianarantsoa Province, Ranomafana National Park, Vatoharanana, 4.0 km SW Ranomafana (village), 21°17.4’S, 47°26.0’E, 1025 m: *M. principula* FMNH 170764.

ANDRAMBOVATO
Fianarantsoa Province, 2 km W. Andrambovato, along Tatamaly River, 21°30.7’S, 47°24.6’E, 1075 m: *M. majori* FMNH 170767, 170768, 170769, 170770, 170771, 170772, SMG 11768, 11769, 11791.

VINANTELO
Fianarantsoa Province, Vinantelo Forest, at foot of Ambodivohirina, 15.5 km SE Vohitrafeny, 21°46.6’S, 47°20.8’E, 1100 m: *M. majori* FMNH 170773, 170787, 170879, SMG 11821.

MANAMBOLO
Fianarantsoa Province, Manambolo Forest, Ambavafatra, along Andohabatotany River, 17.5 km SE Sendrisoa, 22°58.5’S, 47°12.5’E, 1300 m: *M. majori* FMNH 167606, *M. pusilla* FMNH 167619; 19.5 km SE Sendrisoa, 22°9.8’S, 47°2.5’E, 1600 m: *M. longicaudata* FMNH 167575, *M. majori* UADBA 11730.

ANDRINGITRA
Fianarantsoa Province, Andringitra National Park Anjavidilava, 8.5 km SE Antanifotsy, 22°09.5’S, 46°57.6’E, 1990 m: *M. majori* FMNH 159485, 159501, 159502; 8.5 km SE Antanifotsy, Andohan Ambolo campment, 22°10.273’S, 46°56.756’E, 1960 m: *M. majori* FMNH 161689, 165698; –38 km S. Ambalavoa, on ridge east of Volotsanga River, 22°11.39’S, 46°58.16’E, 1625 m: *M. majori* FMNH 151632; Forêt de Ravaro, 12.5 km SW Anjampitso, 22°12.7’S, 46°50.7’E, 1500 m: *M. majori* FMNH 167969, 167970.

Fianarantsoa Province, ~45 km S Ambalavao, east bank Iantara River, along Ambalamanenjana-Ambatombo trail, edge of Andringitra National Park, 22°13’20’S, 47°01’29’E 720 m: *M. majori* FMNH 151630.

IVOHIBE
Fianarantsoa Province, 8 km NE Ivohibe, 5.5 km SE Angodongodona, 22°25.3’S, 46°53.9’E, 1200 m: *M. majori* FMNH 161982, 161983, 161984, UADBA 10310.

Fianarantsoa Province, exterior northern limit Ivohibe Special Reserve, along Hefitany River, ~7.5 km ENE Ivohibe, 22°28.2’S, 46°57.6’E, 900 m: *M. majori* FMNH 161976.

ANALAVELONA
Toliara Province, Analavelona Forest, near source of Manasy River, 16.5 km NW Andranohaza, 22°38.5’S, 44°10.3’E, 1250 m: *M. majori* FMNH 169743, 169744, 169745, 169746, 169747, 169748.

ANDOHAHELA
Toliara Province, Andohahela National Park, parcel 1, 20 km SE Andranondambo 24°33.7’S, 46°43.3’E, 1875 m: *M. longicaudata* FMNH 156578; 12.5 km NW Eminimininy, 24°35.6’S, 46°44.3’E, 810 m: *M. majori*
FMNH 156579, 156583, *M. principula* FMNH 156591; 8 km NW Eminiminy, 24°37.55’S, 46°45.92’E, 440 m: *M. principula* FMNH 156575.

Toliara Province, Marosohy Forest, at edge of Andohahela National Park, 16 km WNW Ranomafana du Sud, 24°34’S, 46°48’E, 725 m: *M. principula* USNM 578758, 578759, 578760, 578761, 578767.

APPENDIX 2

PRIMERS

The following primers were used for both amplification and/or sequencing in various combinations (depending on sample). Numbers in parentheses represent the position of the 3’ nucleotide on the heavy strand of the human mitochondrial genome (GenBank accession number V00662). The first three letters of each primer refer to its location by gene (Met, tRNA-methionine; 16S, 16S rRNA; ND2, NADH dehydrogenase subunit 2; Trp, tRNA-Trp; CO1, cytochrome oxidase subunit I). Standard IUB codes are used for degenerate positions.

Forward primers

- Met-1: CTAATAAAGCTTTCGGGCCCATAC (4436)
- ND2-3TX: TAGCMCCATTYCACTTCTGA (4811)
- ND2-3TY: ACTAGGCATAGCCCCATTCCACTT (4809)
- ND2-3TZ: YCAAATCCACCMATCACT (4915)
- ND2-4TX: TAATATCHATAGGAGG (5227)
- ND2-LTF1: CCCCCGAACAACTGAAGCAG (4635)
- ND2-LTF2: TACCAAATCCACCMATCACT (4915)
- ND2-LTF3: GCACACATGGGTTGAATAGCMGCA (4971)
- ND2-LTF4: ACTATTCTAATAAACTGCTCCTC (5140)
- ND2-LTF5: CAGTAACAATAGCAGTAATAGC (5326)

Reverse primers

- Trp-2: TTCTACTTAAGGCTTTGAAGGC (5540)
- ND2-4: ACTTCTGGTACTCAGAAGTGGAA (4800)
- ND2-LTR2: GAGTAGGCTATGATTTTDCGTA (4993)
- ND2-LTR1: ATTATTGAGGCTGAGGCTTG (4656)
- ND2-LTR2: TGGTGCCTTGGGTTACTTCTGG (4815)
- ND2-LTR3: CTCAACCTCCAATTAGRATTGA (4950)
- ND2-LTR4: GAATAGTAAACATTGCTAGTG (5104)
- ND2-LTR5: TGGTTATTTCATGTYATGGATA (5158)
- ND2-LTR6: TTGGGGATAAATCCTGATAG (5238)
- ND2-LTR7: GAGGATGCGCTAGGATTAGCTG (5352)
- ND2-MR1: TACTGCTGCYATTCATCC (5033)
- ND2-MR2: GGTATATGATTGAAAGGGGGCTAG (4877)
- ND2-MR3: ATTGATAAACAAGCGGATGTTA (4933)

APPENDIX 3

MEASUREMENTS

Bilateral measurements marked with an asterisk (*) were taken on both sides and averaged for all analyses unless one side was damaged, in which case only the undamaged side was measured; the remainder were taken from the left side only (or right side only when the left side was damaged). Measurements denoted with a dagger (†) were recorded for comparison with published studies but were not included in morphometric analyses for reasons given in their definitions. All cranioskeletal measurements were taken as minimum distance between landmarks, i.e. no attempt was made to hold calipers parallel or orthogonal to a given axis (e.g. the midline of the skull or femoral shaft). Only adults, defined by the presence of fully erupted permanent dentition (e.g. Jenkins, Goodman & Raxworthy, 1996), were included. Dental loci are identified by tooth type (I, incisor; C, canine; P, premolar; and M, molar) and position, e.g. I3 refers to the third upper incisor of the permanent dentition (only upper teeth are considered here). We follow the dental nomenclature of MacPhee (1987).

Condyloincisive length (CIL): Posterior-most (caudal) surface of occipital condyle to anterior-most (rostral) surface of I1. CPM (see below) was used instead of the more commonly employed CIL as a measure of skull length because CIL is sensitive to the presence/absence of I1 on a given specimen as well as its looseness within the alveolus when measured with calipers.

Condylopreamaxillary length (CPM): Posterior-most (caudal) surface of occipital condyle to anterior-most (rostral) surface of the premaxilla.

Greatest skull length (GSkL): Greatest distance between rostral and caudal surfaces of skull (without attempting to measure along an axis parallel to palate or tooth row). This measurement does not rely on explicit landmarks and was recorded only for comparison with MacPhee (1987). We use CPM (above) as a measure of skull length in the morphometric analyses.

Condylo-I2 length (CI2): Posterior-most (caudal) surface of occipital condyle to anterior-most (rostral) surface of I2.

Condylo-P3 length (CP3): Posterior-most (caudal) surface of occipital condyle to anterior-most (rostral) surface of P3.

Condylo-entoglenoid length (CEG): Posterior-most (caudal) surface of occipital condyle to anterior-most (rostral) surface of the entoglenoid process of the squamosal.

Paroccipital process to entoglenoid length (PEG): Rostral surface of entoglenoid process of squamo-
sal to caudal surface of paroccipital process of basioccipital.

Greatest breadth across M3 (M3B): Greatest breadth across M³, as measured from lateral surface of distostyle.

Greatest breadth across M2 (M2B): Greatest breadth across M², as measured from lateral surface of distostyle.

Greatest posterior width across M1 (M1WP): Greatest breadth across M¹ as measured from lateral surface of distostyle.

Greatest anterior width across M1 (M1WA): Greatest breadth across M¹ as measured from lateral surface of anterior ectostyle and/or mesiostyle.

Greatest width across P4 (P4W): Greatest breadth across P⁴.

Greatest width across P3 (P3W): Greatest breadth across P³.

Greatest width across I2 (I2W): Greatest breadth across I².

Premaxillary to zygomatic length (PZ): Rostral surface of premaxilla to caudal surface of zygomatic process of maxilla.

Upper toothrow length (UTR): Rostral surface of I¹ to caudal surface of M³.

C1 to I1 length (C1I1): Rostral surface of I¹ to caudal surface of posterior accessory cusp of C¹.

M3 to P3 length (M3P3): Rostral surface of P³ to caudal surface of M³.

Braincase breadth (BB): Greatest cranial breadth, as measured across squamosals.

Greatest breadth across petrosals (PB): Greatest breadth across petrosals as measured from lateral surface of prominence of lateral semicircular canal.

Height of mandible (MH): Greatest distance between coronoid and angular processes of mandible.

Mandibular condyle width (MCW): Greatest breadth across buccal and labial surfaces of mandibular condyle.

Femur, lateral condyle to greater trochanter (FGT): Distal surface of lateral condyle to proximal surface of greater trochanter.

Femur, medial condyle to head (FMH): Distal surface of medial condyle to proximal surface of femoral head.

Femur, medial condyle to lesser trochanter (FLT): Distal surface of medial condyle to proximal surface of medial condyle.

Greatest length humerus (HGL): Proximal surface of humeral head to distal surface of trochlear.

Humerus, head to capitulum length (HHC): Proximal surface of humeral head to distal surface of capitulum.

Humerus, greatest distal condylar width (HCW): Greatest breadth across distal condyles.

Total length (TL): Tip of rostrum to tip of tail.

Tail length (TV): External length of tail.

Head and body length (HB): Tip of nose and caudal point of the body (at base of tail). Counterintuitively, this is often unequal to the calculated difference between TL and TV. HB was not recorded in the field for several specimens included in this study and cannot be accurately measured on prepared skins or fluid-preserved carcasses. As such this measurement was recorded for comparison with published studies but was not included in morphometric analyses. HB was calculated as TL-TV for Figure 3 to include the maximum number of specimens; similar comparisons on the subset of specimens for which traditional field measurements of HB were available reveals similar patterns with respect to large-bodied *Microgale longicaudata* specimens falling in the range previously proposed for *M. principula* (not shown).