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Zoonotic diseases are a looming threat to global populations, and nearly

75% of emerging infectious diseases can spread among wildlife, domestic

animals and humans. A ‘One World, One Health’ perspective offers us an

ideal framework for understanding and potentially mitigating the spread

of zoonoses, and the island of Madagascar serves as a natural laboratory

for conducting these studies. Rapid habitat degradation and climate

change on the island are contributing to more frequent contact among

humans, livestock and wildlife, increasing the potential for pathogen spil-

lover events. Given Madagascar’s long geographical isolation, coupled

with recent and repeated introduction of agricultural and invasive species,

it is likely that a number of circulating pathogens remain uncharacteri-

zed in lemur populations. Thus, it is imperative that new approaches be

implemented for de novo pathogen discovery. To this end, we used non-

targeted deep sequencing of blood transcriptomes from two species of

critically endangered wild lemurs (Indri indri and Propithecus diadema)

to characterize blood-borne pathogens. Our results show several unde-

scribed vector-borne parasites circulating within lemurs, some of which

may cause disease in wildlife, livestock and humans. We anticipate that

advanced methods for de novo identification of unknown pathogens

will have broad utility for characterizing other complex disease transmission

systems.
1. Introduction
Traditional methods for surveying pathogens in wild populations largely depend

on culturable organisms or a priori knowledge (e.g. PCR primers and microarray

probes); however, given the complexity of natural systems, these methods are lim-

ited with respect to pathogen discovery. Advanced disease surveillance tools are

urgently needed as they provide a more accurate depiction of the disease ecology

of natural populations and thus will inform veterinarians and human health pro-

fessionals in situations where pathogen identity and corresponding genetic

signatures are incomplete. Broad implementation of innovative next-generation

disease surveillance methodologies [1] for pathogen discovery will greatly

advance a ‘One World, One Health’ paradigm that seeks coordinated efforts

from wildlife, veterinarian and human health professionals in order to prepare

for and combat emerging infectious diseases.
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Figure 1. Map of Madagascar showing sampling localities for three Indri indri and three P. diadema screened for vector-borne pathogens. Grey shading in the
country map identifies the Toamasina Province. Inset shows blue (I. indri) and red (P. diadema) sampling localities. Yellow shading defines the approximate bound-
ary of the Ambatovy Minerals nickel mine site, an area where ongoing lemur health evaluations are being conducted by C.V.W., R.E.J., and J.R. Grey shading within
inset identifies the extent of transitional and undisturbed primary forest.

Table 1. Blood-borne parasites identified in wild lemur blood transcriptomes. Expressed ribosomal and mitochondrial genes were used for parasite identification
and values are numbers of sequenced bases for 18S and 28S (Babesia), 16S and 23S (Borrelia and C. Neoehrlichia), 18S and 28S-Alpha (Trypanosoma) and COI
and Cyt-b (Plasmodium) (electronic supplementary material, Supplementary Methods and table S7). Numbers of underlying RNA-Seq reads for these genes
appear in parentheses. See figure 1 for geographical sampling localities of I. indri and P. diadema. Phylogenetic analyses are presented in figures 2 and S2.

Babesia sp. Borrelia sp. Candidatus Neoehrlichia sp. Plasmodium sp. Trypanosoma sp.

I. indri 1 1514 bp (3677) 4476 bp (12 160) 1396 bp (208) — —

I. indri 2 3250 bp (16 212) — — 2562 bp (994) 2549 bp (3816)

I. indri 3 3391 bp (15,686) — — — 2684 bp (4274)

P. diadema 1 2723 bp (8184) — 2640 bp (3779) 2562 bp (379) —

P. diadema 2 3081 bp (9862) — — 2562 bp (342) —

P. diadema 3 3640 bp (25 617) — — 2562 bp (460) —
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We tested next-generation methods for non-targeted

pathogen discovery by examining blood samples of two

species of lemurs endemic to the island of Madagascar.

Lemurs have evolved in geographical isolation for approxi-

mately 60 Myr and are a remarkably diverse radiation of

primates, representing perhaps 20% of the world’s primate

species diversity [2]. Moreover, they are experiencing rapid

population declines owing to historical and ongoing destruc-

tion of the forests of Madagascar and the hunting of lemurs

for bushmeat [3–5]. These pressures are amplified in the con-

text of Madagascar’s growing human population and global

climate change, resulting in increased contact among wildlife,

humans and domesticated animals [6–8]. The demographic

effects of these pressures have likely influenced pathogen trans-

mission within wild lemurs and may negatively impact the

health and long-term survival of these endangered species,
but also alter dynamics of disease transmission between

wildlife and humans. Empirical data from Madagascar show

elevated parasite densities in several lemur species and

spillover of pathogenic enterobacteria and viruses from dom-

esticated species and humans into wild lemurs [4,6,8–10].

Relatively few studies, however, have focused on pathogen dis-

covery in lemurs and none has implemented modern next-

generation disease surveillance methods [1,11,12]. Here, we

use high-throughput sequencing of total RNA extracted from

blood samples (i.e. blood transcriptomics) to identify blood-

borne microorganisms. This method is ideally suited for

pathogen discovery in wild animal populations, especially

endangered species, because it is minimally invasive and,

when implemented with metagenomic bioinformatics, can

detect multiple blood-borne pathogens [13]. We used this

approach to detect vector-borne parasites circulating within

http://rsbl.royalsocietypublishing.org/
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Figure 2. ML phylogenies of tick-borne parasites (Babesia (a), Borrelia (b) and Candidatus Neoehrlichia (c)) discovered through blood transcriptome sequencing.
Taxa in bold were identified in I. indri and P. diadema (table 1; figure 1). Black circles identify statistically supported nodes (.75% bootstrap support). Asterisk
indicates that similar genetic strains were found in multiple lemur individuals.
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two critically endangered species of lemurs in Madagascar, the

indri (Indri indri) and diademed sifaka (Propithecus diadema).
2. Material and methods
(a) Molecular methods
We collected 3 ml of blood from three I. indri and three P. diadema in

March 2014. All individuals were sampled from a mid-altitude
rainforest consisting of disturbed, transitional and undisturbed

primary forest located 80 km northeast of Moramanga, Madagas-

car (figure 1). Molecular methods are presented in electronic

supplementary material. Total RNA was extracted from each

blood sample, and RNA samples were barcoded, pooled and

sequenced on one Illumina HiSeq 2000 lane (100 bp paired-end).

Illumina library preparation and sequencing were performed at

the Duke Genome Sequencing Shared Resource (Duke University).

All raw data generated for this study have been deposited in the

Sequence Read Archive under BioProject number PRJNA293089.

http://rsbl.royalsocietypublishing.org/
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Raw reads were quality filtered and mapped to the Microcebus
murinus draft genome (GenBank accession: GCA_000165445.1).

Unmapped reads were retained for downstream analyses. De

novo transcriptome assemblies were performed using TRINITY

v. 2.0 [14]. Individual de novo blood transcriptome assemblies

were imported into GALAXY [15] and were grouped according

to taxonomic classification using the megablast tool for pre-

liminary taxonomic identifications (electronic supplementary

material). For this study, transcriptome assemblies were screened

for putative vector-borne pathogens (e.g. pathogenic tick-borne

bacteria and protozoan parasites) and associated sequences

were retained for downstream analyses. Final taxonomic identifi-

cations consisted of targeted genome mapping to confirm Trinity

assembly results and maximum-likelihood (ML) phylogenetic

analyses using RAxML v. 8 software (electronic supplemen-

tary material) [16]. Contigs used for phylogenetic analyses

were submitted to GenBank under the accession numbers

KT722781–KT722795.
0829
3. Results
Our blood transcriptome sequencing and metagenomic ana-

lyses resulted in the identification of five vector-borne

zoonotic pathogens (tick-borne: Babesia, Borrelia, Candidatus
Neoehrlichia; and insect-borne: Plasmodium and Trypanosoma)

circulating within I. indri and P. diadema in eastern Madagascar

(table 1; figures 1 and 2; electronic supplementary material).

Phylogenetic analyses of ribosomal and mitochondrial genes

assembled from these parasites show the presence of several

new strains or unrecognized species in our sample (figure 2

and electronic supplementary material, figure S2).
4. Discussion
We discovered several new strains or potentially unrecog-

nized species of Babesia, Borrelia, Candidatus Neoehrlichia,

Plasmodium and Trypanosoma circulating in wild lemurs

(table 1 and figure 2; electronic supplementary material,

figure S2). Of these, Borrelia and Candidatus Neoehrlichia

were previously unknown to parasitize lemurs and

C. Neoehrlichia represents a new record for Madagascar.

Importantly, the tick-borne parasites identified in our

survey are closely related to pathogenic strains known to

cause disease in humans, domesticated animals and wild-

life (e.g. babesiosis, borreliosis, neoehrlichiosis) [17–19].

Phylogenetic analyses of these parasites reveal genetic simi-

larity to species found in domestic cats, cattle and rodents,

data that suggest host-spillover events mediated by tick vec-

tors on Madagascar (figure 2; electronic supplementary

material, tables S1 and S2). This observation is further

supported by the recent discovery of Babesia canis, a species

commonly associated with domesticated dogs, circulating in

Propithecus verreauxi from western Madagascar [20]. In the

light of these results, veterinarians and human health officials

working in Madagascar, or with patients who have origi-

nated from or travelled to Madagascar, should consider

a broader array of tick-borne pathogens when diagnosing

illness.

Our findings highlight the remarkable diversity of

Plasmodium species circulating in wild lemurs. Collectively,

there are at least eight unrecognized Plasmodium lineages on

Madagascar, all of which have putatively evolved in isolation
for approximately 20 Myr (electronic supplementary

material, figure S2) [20,21]. We also have discovered a poten-

tially unique species of trypanosome circulating in lemurs

that may shed light on Trypanosoma evolution. The trypano-

somes identified in I. indri form a statistically supported

sister relationship to an undescribed Australian species (elec-

tronic supplementary material, figure S2). Multiple

hypotheses exist regarding the forces underlying the cosmo-

politan distribution of trypanosomes and the Australian

Trypanosoma sp. has been at the centre of this debate

[22,23]. Recent evidence suggests that many trypanosomes

were likely distributed by bats [23], and our results generally

support a dispersal hypothesis given the relatively low gen-

etic distance value separating Australian and Madagascar

trypanosomes (approx. 1.7%) and that the maximum time

of origin hypothesized for the Australian trypanosome is

approximately 20 Myr [24], a value younger than the for-

mation of the island of Madagascar (approx. 80 Myr).

We provide empirical evidence of multiple blood-borne

parasites circulating within wild lemurs. It is likely that several

of these parasites represent novel species, and additional

research focused on describing this diversity is warranted.

Moreover, our phylogenetic analyses indicate that the tick-

borne parasites Babesia and Borrelia, identified herein, most

likely did not evolve in isolation on Madagascar and instead

were imported to the island alongside domesticated species.

Although parasites are natural components of healthy eco-

systems, lemur conservationists must consider non-native

parasitic zoonoses when examining the health of wild species.

From a One Health perspective, we recommend screening for

symptoms of babesiosis, borreliosis and neoehrlichiosis in

Madagascar’s wildlife, domesticated animals and human

population. These findings show the utility of next-generation

disease surveillance approaches for pathogen discovery.
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